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The reason of the article is to provide a basic review of several key concepts in
measure theory. Each concept is illustrated with an example so that one can
easily understand.

1 σ Algebra

a. Sigma algebra definition
Given a non-empty set Ω, a sigma algebra is a collection of all the subsets of Ω
that
1) Include empty set and whole set
2) Include the complement of any element in the sigma algebra
3) Is closed under countable union

b. Sigma algebra example by tossing a coin
The procedure to find out the sigma algebra is to enumerate all the subsets
under the whole set Ω. We now see an example.

We first toss a coin 0 time, there is no outcome, so Ω = {∅}. And the σ
algebra contains an empty set only.
F0 = {∅}
In this case, it is trivial to check 1) 2) and 3)

We then toss the coin once, the outcome is either Head(H) or Tail(T)
Check 1) Ω = H, T
Enumerate all of the subsets of Ω, we get
F1 = {0, Ω, H, T}
Check 2) ∅c = Ω, Ωc = ∅, Hc = T in F1, Tc = H in F1

Check 3) H ∪ T = Ω in F1

So we confirm
F1 = 0, Ω, H, T

We then toss the coin twice
Check 1) Ω = { HH, HT, TH, TT }
Enumerate all the subsets of Ω, we get
F2 = {∅,Ω, HH,HT, TH, TT,
HH ∪HT,HH ∪ TH,HH ∪ TT,HT ∪ TH,HT ∪ TT, TH ∪ TT,
HH ∪HT ∪ TH,HH ∪HT ∪ TT,HH ∪ TH ∪ TT,HT ∪ TH ∪ TT, }
It is easy to check 2), for example HHc = HT ∪ TH ∪ TT in F2, HT c =
HH ∪ TH ∪ TT in F2, THc = HH ∪HT ∪ TT in F2, TT c = HH ∪HT ∪ TH
in F2

The rest check is ignored.
3) is easy to check too. So we confirm
F2 = {∅,Ω, HH,HT, TH, TT,
HHc, HT c, THc, TT c

HH ∪HT,HH ∪ TH,HH ∪ TT,HT ∪ TH,HT ∪ TT, TH ∪ TT,
TT c, THc, HT c, HHc}
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c. Why define sigma algebra?
On top of the sigma algebra, we can define the probability, because the object
that probability measure takes is the sigma algebra.

2 Filtration

Consider a sequence of coin toss
For the first toss, we get F1

For the first and second toss, we get F2

For the first n tosses, we get Fn

The collection of sigma algebra F1, F2 Fn is called a Filtration.

3 Random variable

a. Definition
A random variable is function from Ω to R, with the property that for every
Borel subset B of R, its inverse image from the subset of Ω is in σ-algebra F.

b. Example
Consider 3 toss case, H with prob p, T with prob q
Def. random variable S S0(w0) = 4 for all ω

Sn+1(wn+1) =2Sn(wn) if wn+1 = H

1

2
Sn(wn) if wn+1 = T

so
S0(w1w2w3) = 4 for all wi

S1(w1w2w3) = 8 if w1 = H
S1(w1w2w3) = 2 if w1 = T
S2(w1w2w3) = 16 if w1 = w2 = H
S2(w1w2w3) = 4 if w1 6= w2

S2(w1w2w3) = 1 if w1 = w2 = T

4 σ Algebra Generated by a Random Variable
and Measurable Function

Give consider a random variable S: Ω to R, for every open set in R, the collection
of their inverse image forms an sigma algebra, and it is called the sigma algebra
generated by S. And S is called F-measurable. The concept measurable is not
very intuitive to understand. An easy way to understand this is S is completely
determined by F, then S is F measurable.
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5 Conditional Expectation

a. Definition
The conditional expectation is a random variable that satisfies the two following
conditions
1) E[X|G] is G measurable, which means the value of E[X|G] is completely de-
termined by G
2)

∫
A
E[X|G](w)dP (w) =

∫
A
X(w)dP (w) for all A which belongs to G

b. Example to understand 2)
Consider 3 toss case, H with prob p, T with prob q
Define random variable S
S0(w) = 4 for all w
Sn+1(w) = 2Sn(w) if wn+1 = H
Sn+1(w) = 1

2Sn(w) if wn+1 = T
Expectation of 3 tosses random variable S3 give the first two is HH

E2(S3|HH) = pS3(HHH) + qS3(HHT )

E2(S3|HT ) = pS3(HTH) + qS3(HTT )

E2(S3|TH) = pS3(THH) + qS3(THT )

E2(S3|TT ) = pS3(TTH) + qS3(TTT )

E2(S3|HH)P (HH) = prob(HHH)S3(HHH) + prob(HHT )S3(HHT )

E2(S3|HT )P (HT ) = prob(HTH)S3(HTH) + prob(HTT )S3(HTT )

E2(S3|TH)P (TH) = prob(THH)S3(THH) + prob(THT )S3(THT )

E2(S3|TT )P (TT ) = prob(HTH)S3(TTH) + prob(TTT )S3(TTT )

This confirms def 2), for A = HH or HT or TH or TT∫
E2(S3|G)(w)dP (w) =

∫
A
X(w)dP (w)

c. Properties

1) The conditional expectation is a random variable. Because the value is de-
pendent on G.

2) If X is G measurable, then E[X|G] = X.

3) If X is G measurable E[XY |G] = XE[Y |G], this is to take out what is known.

4) If X is independent of G, E[X|G] = EX

To understand 2), 3) and 4), consider two extreme cases
Define random variable S
S0(w) = 4 for all w
Sn+1(w) = 2Sn(w) if wn+1 = H
Sn+1(w) = 1

2Sn(w) if wn+1 = T
Then a condition expectation can be defined as
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E[Sn|Ft] = E[Sn|ω1, ω2, ..., ωt]

If t=n, then E[Sn|Fn] = Sn, this is because when Fn is known, then Sn is
known, there is nothing to average. This corresponds to Property 2) and 3)

If t=0, then E[Sn|F0] = E[Sn], this is because F0 provides no restriction to
average Sn, the conditional expectation needs to average all possible cases, it is
a general expectation. This corresponds to Property 4).

5) If G is a subset of H
E[E[X|G|H]] = E[X|H]

6 Law of Large Numbers

a. Weak law of large number
Suppose X1, X2,..., Xn are iid, and u is the expectation.
limn→∞Pr(|X̄ − u| > >ε) = 0

b. Strong law of large number
Pr(limn→∞X̄ = u) = 1

c. Difference
In weak case, |X − u| > ε can happen infinite times, however, in strong case,
it does not. There exist in certain case where Xn converges in weak case but
does not converge in strong case. An example would be a series of Xn that is
conditionally convergent, which means the series does not converge absolutely,
and by rearranging terms, the series converges to a different value. For example,
if X be random variable following geometric distribution with probability 0.5.
Then the expectation of a new random variable 2X(−1)XX−1 is

E[2X(−1)XX−1] =

∞∑
1

(−1)x

x
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1

2
− 1

3
...

=− ln2

By rearranging the terms,
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Therefore, this is conditionally convergent, meaning it satisfies the weak law not
the strong law.
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