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Abstract In this article, we present a variety of methods for pricing options
with simulation results. We first review the theory of the Black-Scholes-Merton
model, then move to the Heston model with stochastic volatility. We analyze
both models with possible analytical solutions. Then we introduce the Monte
Carlo simulation algorithms for each model. A special algorithm for handling
early exercising feature of American style option is provided. Finally, we present
the simulation results and compare the results with literature.

1 European Option Pricing Models

In this section we first present two approaches for pricing European options:
One is to solve Black-Scholes-Merton partial differential equation and the other
one is using Martingale property. We are going to show these two approches
are equivalent as they are connnected through Faynman-Kac formula. Then we
present the analytical solutions and discussions.

1.1 Black Scholes Merton Equation: Introduction

Here is basic idea for pricing options. We consider a portfolio composed of
certain shares of stock and a saving account with an interest rate then use the
portfolio to replicate the payoff of the option. If we are able to replicate the
payoff successfully, we can set the value of the portfolio equal to the price of
the option. We briefly go through the steps to derive the Black Scholes Merton
equation. We assume the stock prices following a geometric Brownian motion
1) Stock price:

dS(t) = αS(t)dt+ σS(t)dW (t)

2) We have a portfolio X(t) which consists of ∆(t) share of stock ∆(t)S(t), and
(X(t)−∆(t)S(t)) money market account with interest rate r.

X(t) = ∆(t)dS(t) + r(X(t)−∆(t)S(t))dt
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3) Change of the portfolio with respect to time

dX(t) = ∆(t)dS(t) + r(X(t)−∆(t)S(t))dt

= rX(t)dt+∆(t)(α− r)S(t) + ∆(t)σS(t)dW (t)

4) Change of the present value of the stock with respect to time

d(e−rtS(t)) = (α− r)e−rtS(t)dt+ σe−rtS(t)dW (t)

5) With a few steps, we get change of the present value of the portfolio with
respect to time

d(e−rtX(t)) = ∆(t)(α− r)e−rtS(t)dt+∆(t)σe−rtS(t)dW (t) (1)

6) Assume the option value is c(t, S(t)) and we apply Ito’s formula

d(e−rtc(t, S(t))

=e−rt[−rc(t, S(t)) + ct(t, S(t)) + αS(t)
∂c(t, S(t))

∂S(t)
+

1

2
σ2S2(t)

∂2c(t, S(t))

∂S2(t)
]dt

+ e−rtσS(t)
∂c(t, S(t))

∂S(t)
dW (t)

7)Now equate Equation in 5) and 6), we get
dW(t) term:

∆(t) =
∂c(t, S(t))

∂S(t)

dt term:

rc(t, S) = ct(t, S(t)) + rS(t)
∂c(t, S(t))

∂S(t)
+

1

2
σ2S(t)

∂2c(t, S(t))

∂S2(t)
(2)

which is known as Black-Scholes-Merton partial differential equation.
The terminal condition the equation satisfies for call option is

c(T, S) = (S(T )−K)+

Similarly, for put option

p(T, S) = (K − S(T ))+
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1.2 Martingale Approach

In risk-neutral measure, we write the stock price as

dS(t) = rS(t)dt+ σS(t)dW̃ (t)

Where W̃ (t) is a standard Brownian motion under risk-neutral measure. So by
subsituting α = r in Eq. 1, we have

d(e−rtX(t)) = ∆(t)σe−rtS(t)dW̃ (t)

As the expecation of dW (t) is 0, the expectation of discounted value of the
portifolio does not change with time, which implies the discounted value of the
portifolio is a martingale. Using this martingale property, we can get the value
of the portfolio at time t

X(t) = Ẽ[e−r(T−t)X(T )|F (t)]

To find the value of the option at time t, we use the replicating strategy, in
which we replicate the payoff of option g(T ) at time T using portfolio X(T ) by
setting X(T ) = g(T ). Based on martingale property of X(t), the option price
c(t, S(t)) is

c(t, S(t)) = X(t) = Ẽ[e−r(T−t)X(T )|F (t)] = Ẽ[e−r(T−t)g(T )|F (t)]

1.3 Connection to Faynman-Kac formula

From above, we know

c(t, S(t)) = Ẽ[e−r(T−t)g(T )|F (t)] = Ẽ[e−r(T−t)g(S(T ), T )|F (t)] (3)

Based on Faynman-Kac formula, there is a function c(t, S(t)) which must satisfy
discounted partial differential equation

ct(t, S) + rScS(t, S) +
1

2
σ2S2cSS(t, S) = rc(t, S)

Where c(T, S(T )) = g(S(T ), T ). This is the exactly the Black-Scholes-Merton
equation that we derived as in Eq. 2. Now we have seen two ways of showing
the Black-Scholes-Merton(BSM) equation. One way is to reproduce the payoff
of the option using a portfolio that consists of a saving account. Another way
is based on the risk-neutral pricing formula and Feynman-Kac formula. These
two ways are equivalent. Because under risk-neutral measure, the payoff of a
derivative is the same as a saving account, which imply we are able to reproduce
the payoff using portfolio that consisting of a saving account.

1.4 Black-Scholes-Merton Model: Analytic Solution for

European Option

1. European call option
For European call option with payoff to be V (T ) = max(S(T )−K, 0), with K
as strike price, let us assume constant volatility σ, and constant interest rate r.
Then we can obtain the solution to the BSM equation with martingale property
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without bothering solving the complex parital differential equation. The call
option value satisfies

c(t, S(t)) = Ẽ[e−r(T−t)(S(T )−K)+|F (t)]

We write

S(T ) = S(t)exp{σ(W̃ (T )− W̃ (t)) + (r − 1

2
σ2)τ}

= S(t)exp{−σ
√
τY + (r − 1

2
σ2)τ}

Where Y is the stardard normal random variable and τ = T − t is the time to
expiration.

Y = −W̃ (T )− W̃ (t)√
T − t

So we see that S(T ) is the product of the F (t) measurable random variable S(t)
and random variable

exp{−σ
√
τY + (r − 1

2
σ2)τ}

Which is independent of F (t). Therefore based on risk-neutral pricing formula[3]

c(t, x) = Ẽ[e−rτ (xexp{−σ
√
τY + (r − 1

2
σ2)τ} −K)+]

=
1√
2π

∫

∞

−∞

e−τr(xexp{−σ
√
τy + (r − 1

2
σ2)τ} −K)+e−

1

2
y2

dy

After a little bit of math with integration, we have the solution to the Black-
Scholes-Merton model for European call option

c(τ, x;K, r, σ) = xN(d1(τ, x))− e−rτKN(d2(τ, x))

Where

d1 =
1

σ
√
τ
[ln(

St

K
) + (r +

σ2

2
)τ ]

d2 = d1 − σ
√
τ

N() is the cumulative distribution function of the standard normal distribution
2. European put option
The payoff for the European put option is V (T ) = max(K − S(T ), 0), we can
follow a similiar derivation and get the formula for put option

p(τ, x;K, r, σ) = Ke−rτN(−d2)− xN(−d1)

3. Options based on dividend-paying stock
The value of dividend-paying stock consists of two parts. One is the value of
the stock, the other one is the value of dividend. Suppose the dividend rate is a,
then the change of value of dividend-paying stock over time dt is dS(t)+aS(t)dt.
In order to make the discounted value a martingale, we require

dS(t) + aS(t)dt

S(t)
= rdt+ σdW̃ (t)
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so

dS(t) = (r − a)S(t)dt+ σS(t)dW̃ (t)

S(T ) = S(t)exp{σ(W̃ (T )− W̃ (t)) + (r − a− 1

2
σ2)τ}

Following similar derivation, for call option we can get

c(τ, x;K, r, σ) = xe−aτN(d1(τ, x))− e−rτKN(d2(τ, x))

p(τ, x;K, r, σ) = Ke−rτN(−d2)− xe−aτN(−d1)

4. Boundary conditons
Using the solution c(t, x) and p(t, x), we can easily check the boundary condi-
tions when time t approaches to expiration time T.
As we know

d1 =
1

σ
√
τ
ln(

S

K
) +

1

σ
(r +

σ2

2

√
τ)

When τ → 0, the second term decays much faster, so it vanishes. When S > K,
d1 goes to infinity, when S < K, d1 goes to negative infinity. Therefore, when
S > K

c(t, x) = S ∗N(+∞)−K ∗N(+∞) = S −K

Therefore, when S < K

c(t, x) = S ∗N(−∞)−K ∗N(−∞) = 0− 0 = 0

5. Examples
The following graphs show the change of option price with respect to different
parameters.
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6. Alternative formulation
If we introduce F = e(r−a)τS, which is the forward price of the asset S. Then
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the equation pricing equation becomes

C(F, τ) = D[N(d+)F −N(d−)K]

P (F, τ) = D[N(−d−)K −N(−d+)F ]

d+/− =
1

σ
√
τ
[ln(

F

K
) + /− 1

2
σ2τ ]

The variables are:
τ = T − t is the time to expiry
D = e−rτ is the discount factor

1.5 Heston Stochasic Volatility Model

The Black-Scholes equation assumes the volatility is constant, which is the ideal
case and not practical in the real market. The Heston model[1] assumes the
volatility to follow a stochastic process. Suppose a stock price under risk-neutral
measure is governed by

dS(t) = rS(t)dt+
√

V (t)S(t)dW̃1(t) (4)

and the volatility itself is governed by the equation

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)dW̃2(t) (5)

Where

dW̃1(t)dW̃2(t) = ρdt

The parameter θ can be viewed as a long-term average variance. And the
instantaneous variance is pulled elastically towards the long-term variance by a
speed controlled by parameter b. To solve the option pricing for this model, we
apply the same martingale property under risk-neutral measure. The value of
the European call option is

C(t, S(t)) = Ẽ[e−r(T−t)V (T )|F (t)] = Ẽ[e−r(T−t)(ST −K)+|F (t)]

Let xT = ln(ST ), and τ = T − t, then, and we assume the pdf of ln(xT ) given
xtis p(xT |xt), then

C(t, S(t)) = e−rτ

∫

∞

lnK

(exT −K)p(xT |xt)dxT

= e−rτ

∫

∞

lnK

exT pdf(xT |xt)dxT − e−rτK

∫

∞

lnK

p(xT |xt)dxT

= S0I1 − e−rτKI2 (6)

where

I1 =
1

S0
e−rτ

∫

∞

lnK

exT p(xT |xt)dxT (7)
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I2 =

∫

∞

lnK

p(xT |xt)dxT (8)

So as long as we know the pdf of xT , we can solve these two integral and get
C(t, S(t)). But unlike in the BSM model, the analytical form of pdf of x does
not exist for Heston model. Fortunately, literauture shows the characteristic
function of x exists. Heston [1] proposed a solution using characteristic function.
We list the result here and we will elaborate the derivation in the Appendix.
Suppose φ(u, xt) is the characteristic function of p(xT |xt), Heston shows φ(u, xt)
takes the form of

φ(u) = exp(C(T − t, u) +D(T − t, u)Vt + iuxt) (9)

Let τ = T − t. The solution of C and D are

C(τ, u) = iruτ +
κθ

σ2
[(κ− iρσu+ d)τ − 2ln(

1− gedτ

1− g
)] (10)

D(τ, u) =
κ− iρσu+ d

σ2
(
1− edτ

1− gedτ
) (11)

Where

d =
√

(iρσu− κ)2 + σ2(iu+ u2)

g =
κ− iρσu+ d

κ− iρσu− d

then using inverse Fourier transform

I1 =
1

π

∫

∞

0

Re(
e−iuln(K)φ(u− i)

iuφ(−i)
)du+

1

2

I2 =
1

π

∫

∞

0

Re(
e−iulnK

iu
φ(u))du+

1

2

With I1 and I2, we can have the solution of the value of the option using Eq. 6.

2 Monte Carlo Simulation Processes

In simulation, we decompose the time evolvement of an asset price into three
components: drift, diffusion, jump. The drift term is dt term, the diffusion term
has Brownian motion component, the jump term has Possion component. Let
us look at the following examples.
1. BSM process
In BSM process, the asset price follows

S(t) = S(0)exp((r − 1

2
σ2)dt+ σdW (t))
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The drift term is clearly r − 1
2σ

2 for any given dt. For the diffusion term, we
need to generate W(t). We know the W(t) is a Normal random variable with
mean 0 and variance t. So suppose we generate a Gaussian random variable Ŵ ,
it turns out W =

√
tŴ is normally distributed with variance t.

µ = r − 1

2
σ2

S(t+dt) = S(t)exp(µdt+ σ
√
dtŴ )

2. Heston process
The Heston model states

dS(t) = rS(t)dt+
√

V (t)S(t)d̃W1(t)

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)d̃W2(t)

d̃W1(t)d̃W2(t) = ρdt

a. Generating two Brownian motions with correlation.
To simulate Heston process needs to generate two Gaussian random variables
that has correlation ρ, we do this by first generate two independent Gaussian
random variables W1, W2, then

W
′

1 = Ŵ1

W
′

2 = ρŴ1 +
√

1− ρ2Ŵ2

We can easily check the mean of W
′

2

E[W
′

2] = ρE[W1] +
√

1− ρ2E[W2] = 0

V ar[W
′

2] = ρ2V ar[W1] + (1− ρ2)V ar[W2] = ρ2 + 1− ρ2 = 1

cor(W
′

1,W
′

2) =
E[W

′

1W
′

2]
√

V ar[W
′

1]
√

V ar[W
′

2]

= E[W1(ρW1 +
√

1− ρ2)W2]

= ρE[W 2
1 ] +

√

1− ρ2E[W1W2]

= ρ

The last step uses the factW1 andW2 are independent, so E[W1W2] = E[W1]E[W2] =
0.
b. Discretization schemes and coping with negative V(t).
The Heston model setting provides a non-negative V(t). This can be seen when
V(t) is positively moving close to zero, the drift term adt pulls the V(t) up
and avoid V (t) to cross zero. However, in discretized version V (t) may attain
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negative values. There exists several methods to deal with this issue.
(1) Absorption: Keep positive part of the previous V (t) and use it to calculate
next step V (t+ dt) and X(t+dt)

V (t+dt) = V +(t) + κ(θ − V +(t))
√
dt+ σ

√

V +(t)dt(ρŴ1 +
√

1− ρ2Ŵ2)

(2) Relection: Keep the absolute value of the previous V (t) and use it to calcu-
late next step V (t+ dt) and X(t+dt)

V (t+dt) = |V (t)|+ κ(θ − |V (t)|)
√
dt+ σ

√

|V (t)|dt(ρŴ1 +
√

1− ρ2Ŵ2)

(3) Partial truncation: Using the posivive part in diffusion term of V (t + dt)
and in X(t+ dt)

V (t+dt) = V (t) + κ(θ − V (t))
√
dt+ σ

√

V +(t)dt(ρŴ1 +
√

1− ρ2Ŵ2)

(4) Full truncation[3]: Using the positive part in drift and diffusion terms of
V (t+ dt), and in X(t+ dt). This scheme is proved to have the lowest bias.

V (t+dt) = V (t) + κ(θ − V +(t))
√
dt+ σ

√

V +(t)dt(ρŴ1 +
√

1− ρ2Ŵ2) (12)

Together with formula for the drift and asset price, we write

µ = r − 1

2
(V +(t))

S(t+dt) = S(t)exp(µdt+
√

V +(t)
√
dtW1)

V (t+dt) = V (t) + κ(θ − bV +(t))
√
dt+ σ

√

V +(t)dt(ρŴ1 +
√

1− ρ2Ŵ2)

All these above belong to the Euler discretization schemes which lead to more or
less discretization errors. There exists an exact but computationaly expensive
simulation scheme proposed by Broadie and Kaya[4]. Their method is based on
the fact that the transition probability of V (t) given V (u)u < t) is chi-square
distribution, which can be proved using Kolmogorov’s partial differential equa-
tion.

3 Simulation for American Option

American Option can be exercised at any time. So in Monte Carlo Simulation,
for each path we need to determine the stopping time, in other words, time for
the option to be exerciesed. For each sample path at each time step point, we
need to compare the current payoff value with the value to keep holding this
option. If the current payoff value is great than the value to keep holding this
option, we choose to exercise, otherwise we hold it. To evaluate the value to
hold this option requires another Monte Carlo simulation, so the simulation for
American option has a ”Monte Carlo on Monte Carlo feature”, and this is very
computationally expensive. To see why it is expensive, consider the case of M
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samples and we are at time step 1. To determine the value of holding the option,
we need generate another Monte Carlo simulation which has M sample paths.
As we move on the time step, each step needs the number of sample path M
times the previous one, therefore, the total number of Monte Carlo simulation
grows exponentially as time step grows.

However, this does not mean there is no feasible way to evaluate American
options. One idea is to avoid doing additional Monte Carlo simulation at each
step to determine the value of holding the option and utilizing the simulation
path of the European options. LongStaff[2] proposed an algorithm to determine
the stopping time by using least square regression and here we briefly outline
the algorithm.

Let us assume the option has a payoff function h(S,K), where K is strike
price. The algorhim simply has two parts. The first part is to follow the stan-
dard simulation scheme for European options. We generate M samples path
from timestep 0 to timestep T. For each sample, the asset price forms a price

path from i = 0 to T and the current asset price at a given timestep i is S
(m)
i ,

where 0 ≤ i ≤ T . We define a discount factor Di,j to discount the asset price
at time j to time t. For example D13 = e−(3−1)r = e−2r. Then the second part
is to define a stopping time τ (m) for each path.
(1) set τ (m) to T for each sample path m.
(2) for t from T - 1 to 1:

for each sample:

(2a) calculate discount payoff value: DV (m) = Dt,τh(S
(m)
τ ,K)

(2b) calculate the current payoff value: h(S
(m)
t )

(2c) regress DV on St using least square and get estimated
discount payoff value EDV = f(St)

(2d) if h(S
(m)
t ) > EDV (m)(X

(m)
i ),

this means we can exercise the option, then upate τ (m) = t.
(3) for each path calculate the present value of the payoff at stopping time τ

PV (m) = Dt,τh(S
(m)
τ ,K)

(4) average PV (m) to get the price of the option

4 Result

Simulation of option value with BSM model using both analytical(ANAL)
and Monte Carlo(MC). We calcuate the values of option of different types
and styles listed in Table. 1. For MC method, we choose 100 timesteps per
year and 100000 sample paths. For Eurpoean style, we also compare the result
with the analytical one. Our data matches the data presented in [2]. The result
verified that for European option, there is no incentive to exercise early as the
payoff function given the risk-neutral measure is a submartingale and has the
trend to increase(Proof in Appendix). For American put option, we observe
that the NPV is larger than the NPV of European option across different strike
prices and volatilities, so the early exercise value is clearly visible.

Simulation of option value with Heston model using both analyt-
ical(ANAL) and Monte Carlo(MC) We calcluate the values of different
options using Heston model and list the result in Table 2. For the parameters,
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Style Type S K r Time σ NPV(ANAL) NPV(MC) Ref[2]
European Call 36.0 40 2 0.06 0.2 4.28 4.27(3)
American Call 36.0 40 2 0.06 0.2 N/A 4.28(3)
European Put 36.0 40 2 0.06 0.2 3.76 3.76(2)
American Put 36.0 40 2 0.06 0.2 N/A 4.81(3) 4.82(1)
European Call 36.0 40 2 0.06 0.4 8.22 8.27(6)
American Call 36.0 40 2 0.06 0.4 N/A 8.23(6)
European Put 36.0 40 2 0.06 0.4 7.70 7.70(4)
American Put 36.0 40 2 0.06 0.4 N/A 8.50(3) 8.49(2)
European Call 44.0 40 2 0.06 0.2 9.95 9.93(5)
American Call 44.0 40 2 0.06 0.2 N/A 9.91(5)
European Put 44.0 40 2 0.06 0.2 1.43 1.44(1)
American Put 44.0 40 2 0.06 0.2 N/A 1.67(3) 1.68(1)
European Call 44.0 40 2 0.06 0.4 13.73 13.81(9)
American Call 44.0 40 2 0.06 0.4 N/A 13.75(8)
European Put 44.0 40 2 0.06 0.4 5.20 5.21(3)
American Put 44.0 40 2 0.06 0.4 N/A 5.65(3) 5.62(2)

Table 1: Simulation result of different options using BSM model. S: Underlying
Asset Price. K: strike price. r: interest rate. Time: time to expiration. σ:
volatility. NPV(ANAL): Analytical result of net present value. NPV(MC):
Monte Carlo result of net present value.

θ is chosen to be the square of the initial volatility. And ρ is chosen to be a
negative value because there is negatived correlated relationship between the
change of the stock price and the change of volatility in Ref. ??, Eq. 17.In the
table, with each set of parameters, we present two ways of calculation. The first
one is using characteristic function inversion defined in Eq 9, Eq 10, Eq 11 and
we label it as NPV(ANAL). The second is Monte Carlo labeled as NPV(MC).
In Monte Carlo method, we use full truncation scheme to prevent V (t) to be
negative. 40 time steps per year and 10000 samples are used. We see that these
two methods agree pretty well.

A Applendices

A.1 Semi-analytical Solution to Heston Model

A.1.1 Solve for the Characteristic Function of ln(St)

The stochastic process of ln(St) can be obtained by Ito’s formula

d(ln(St)) =
ln(St)

St
dSt −

1

2S2
t

(dSt)
2

=
1

St
(rS(t)dt+

√

V (t)S(t)dW1(t))−
1

2S2
t

(rS(t)dt+
√

V (t)S(t)dW1(t))
2
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Type S K r Time κ θ σ ρ NPV(ANAL) NPV(MC)
Call 36.0 40 0.06 2 2 0.04 0.1 -0.5 4.26 4.26(1)
Put 36.0 40 0.06 2 2 0.04 0.1 -0.5 3.74 3.73(1)
Call 36.0 40 0.06 2 2 0.16 0.1 -0.5 8.18 8.19(3)
Put 36.0 40 0.06 2 2 0.16 0.1 -0.5 7.65 7.64(2)
Call 44.0 40 0.06 2 2 0.04 0.1 -0.5 10.01 10.03(2)
Put 44.0 40 0.06 2 2 0.04 0.1 -0.5 1.49 1.48(1)
Call 44.0 40 0.06 2 2 0.16 0.1 -0.5 13.73 13.75(4)
Put 44.0 40 0.06 2 2 0.16 0.1 -0.5 5.20 5.18(1)

Table 2: Simulation result of European options based on Heston model. S:
Underlying Asset Price. K: strike price. r: interest rate. κ, θ, σ, ρ are defined
in Eq 5. NPV(ANAL): Analytical result of net present value. NPV(MC): Monte
Carlo result of net present value.

We only would like to keep the first-order terms, so

d(ln(St)) = (rdt+
√

V (t)dW1(t))−
1

2
V dt

= (r − 1

2
V (t))dt+

√

V (t)dW1(t)

Let xt = ln(St), the characteristic function of xT given xt is defined as

φ(u, t, xt) = E[eiuXT |xt]

with φ(u, T,XT ) = eiuXT . Then based on Feynman-Kac formula, φ(u, t, xt)
satisfies the partial differential equation

∂φ(u, t, xt)

∂t
+ (r − 1

2
Vt)

∂φ(u, t, xt)

∂xt
+ (κ(θ − Vt))

∂φ(u, t, xt)

∂Vt

+
1

2
Vt

∂2φ(u, t, xt)

∂xt∂xt
+ ρσVt

∂2φ(u, t, xt)

∂xt∂Vt
+

1

2
σ2Vt

∂2φ(u, t, xt)

∂Vt∂Vt
= 0 (13)

We guess φ(u) has the form

φ(u, t, x) = exp(C(T − t, u) +D(T − t, u)Vt + iuxt) (14)

which satisfy the terminal condition φ(T, xT ) = eiuxT . With Eq. 14, we easily
see

∂φ(u, t, xt)

∂xt
= iuφ(u, t, xt)

∂2φ(u, t, xt)

∂xt∂xt
= −u2φ(u, t, xt)

So Eq. 13 becomes

−∂φ

∂τ
+ (r − 1

2
V )iuφ+ (κ(θ − V ))

∂φ

∂V
− 1

2
V u2φ+ ρσV iu

∂φ

∂V
+

1

2
σ2V

∂2φ

∂V 2
= 0

13



If we substitude the expression of φ(u, t, x) in Eq. 14 into Eq. 15, work out
the derivative terms and separate the term with and without V , we can get the
following two equations

−∂D

∂τ
− κD − 1

2
u2 − 1

2
iu+ iρσuD +

1

2
σ2D2 = 0

−∂C

∂τ
+ iru+ κθD = 0

These equations can be solved and we can get the expression of C and D as in
Eq. 10 and Eq. 11.

C(τ, u) = iruτ +
κθ

σ2
[(κ− iρσu+ d)τ − 2ln(

1− gedτ

1− g
)]

D(τ, u) =
κ− iρσu+ d

σ2
(
1− edτ

1− gedτ
)

Where

d =
√

(iρσu− κ)2 + σ2(iu+ u2)

g =
κ− iρσu+ d

κ− iρσu− d

A.1.2 Option Price Solution based on Characteristic Function

From Eq. 7 and Eq. 8

I1 =
1

S0
e−rτ

∫

∞

lnK

exT p(xT |xt)dxT

I2 =

∫

∞

lnK

p(xT |xt)dxT

Using inverse Fourier transform, we have

p(x) =
1

2π

∫

∞

−∞

e−iuxφ(u)du

Then we can write I2 as

I2 =

∫

∞

lnK

p(x)dx =

∫

∞

lnK

(
1

2π

∫

∞

−∞

e−iuxφ(u)du)dx

Changing the order the integration yields

I2 =
1

2π

∫

∞

−∞

φ(u)(

∫

∞

lnK

e−iuxdx)du

=
1

2π

∫

∞

−∞

φ(u)(

∫

∞

−∞

1x>lnKe−iuxdx)du

14



The inner integral is the inverse Fourier transform of a step function and the
result is well-known.

I2 =
1

2π

∫

∞

−∞

φ(u)(
1

iu
e−iulnK + πδ(u))du

=
1

2π

∫

∞

−∞

φ(u)(
1

iu
e−iulnK)du+

1

2

=
1

2π
(

∫ 0

−∞

1

iu
φ(u)e−iulnK +

∫

∞

0

1

iu
φ(u)e−iulnK)du+

1

2

=
1

2π

∫ 0

∞

1

i(−u)
φ(−u)eiulnKd(−u) +

∫

∞

0

1

iu
φ(u)e−iulnKdu+

1

2

=
1

2π

∫

∞

0

1

i(−u)
φ(−u)eiulnKdu+

∫

∞

0

1

iu
φ(u)e−iulnKdu+

1

2

=
1

2π

∫

∞

0

(
1

i(−u)
φ(−u)eiulnK +

1

iu
φ(u)e−iulnK)du+

1

2

=
1

2π

∫

∞

0

Re(2
1

iu
φ(u)e−iulnK)du+

1

2

=
1

π

∫

∞

0

Re(
1

iu
φ(u)e−iulnK)du+

1

2

I1 is a little tricky,

I1 =
1

S0
e−rτ

∫

∞

lnK

exp(x)dx =
1

S0
e−rτ

∫

∞

lnK
exp(x)dx

∫

∞

−∞
exp(x)dx

∫

∞

−∞

exp(x)dx

Based on martingale property
∫

∞

−∞
exp(x)dx = erTS0, so

I1 =

∫

∞

lnK

exp(x)dx
∫

∞

−∞
exp(x)dx

=

∫

∞

lnK

p
′

dx

The Fourier transform of function p
′

is
∫

∞

−∞
eiux+xp(x)dx

∫

∞

−∞
ei(−i)xp(x)dx

=
φ(u− i)

φ(−i)

So I1 is

I1 =
1

π

∫

∞

0

Re(
e−iuln(K)φ(u− i)

iuφ(−i)
)du+

1

2

A.1.3 Partial Differential Equation for Heston Model

The Heston model states the asset price follows

dS(t) = rS(t)dt+
√

V (t)S(t)d̃W1(t) (15)

15



and the volatility itself is governed by the equation

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)d̃W2(t) (16)

(17)

Where

d̃W1(t)d̃W2(t) = ρdt

At time t, the risk-neutral price of a call expiring at time T ≥ t in this model is

c(t, S(t), V (t)) = Ẽ[e−r(T−t)(S(T )−K)+|F (t)]

If we move the term crt to the left hand side, we see

e−rtc(t, S(t), V (t)) = Ẽ[e−rT (S(T )−K)+|F (t)] (18)

which satisfies the martingale property. Then we take the differentiation of
e−rtc(t, S(t), V (t)). We get

d(e−rtc(t, S(t), V (t))

=
∂e−rt

∂t
c(t, S(t), V (t)) + e−rt ∂c(t, S(t), V (t))

∂t
dt

=− re−rtc(t, S(t), V (t))dt (1)

+e−rt ∂c

∂t
dt (2)

+e−rt ∂c

∂S
dS (3)

+e−rt ∂
2c

∂S2
dSdS (4)

+e−rt ∂c

∂V
dV (5)

+e−rt ∂
2c

∂V 2
dV dV (6)

+e−rt ∂2c

∂V ∂S
dV dS (7)

As we are interested in only the dt terms, we find out the dt terms from (1) to
(7) the dt term in (1) is

−rc(t, S(t), V (t))e−rtdt

the dt term in (2) is

∂c

∂t
e−rtdt

the dt term in (3) is

∂c

∂S
rSe−rtdt

16



the dt term in (4) is

1

2

∂2c

∂S2
V S2e−rtdt

the dt term in (5) is

∂c

∂V
(a− bV (t))e−rtdt

the dt term in (6) is

1

2

∂2c

∂V 2
V σ2e−rtdt

the dt term in (7) is

∂2c

∂V ∂S
V Sσe−rtdt

Collect all the dt terms and let those terms equal to zero, we get

ct + rscs + (a− bv)cv +
1

2
s2vcss + ρσsvcsv +

1

2
σ2vcvv = rc (19)

The function c(t, s, v) satisfies boundary condition

c(T, s, v) = (s−K)+

c(t, 0, v) = 0

c(t, s, 0) = (s− e−r(T−t)K)+

lims→∞

c(t, s, v)

s−K
= 1

limv→∞c(t, s, v) = s

A.2 Proof of Submartingale Property of European Call

Option

We know the under risk-neutral measure, the stock price St is a martingale

St = E[e−r(T−t)ST |F(t)]

Let g(T) be the European call option payoff function. Then

g(St) = g(E[e−r(T−t)ST |F(t)])

By Jensen’s inequality

g(E[e−r(T−t)ST |F(t)]) ≤ E[g(e−r(T−t)ST )|F(t)]

for convex function g, we note, given 0 < λ < 1

g(λs1 + (1− λ)s2) ≤ λg(s1) + (1− λ)g(s2)

17



and for call option payoff we have g(0) = 0, so by taking s2 = 0 and λ =
e−r(T−t), we have

E[g(e−r(T−t)ST )|F(t)] ≤ E[e−r(T−t)g(ST )|F(t)]

We need to pay attention that the above equation only holds for call option. For
put option, since g(0)! = 0, so the above equation does not hold. Combining all
equations above, we have

g(St) ≤ E[e−r(T−t)g(ST )|F(t)]

e−rtg(St) ≤ E[e−rT g(ST )|F(t)]

This shows payoff function g(St) is a submartingale with respect to time t.
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