
JVM basic

Key Words and Statement in Java

Garbage Collection

Initialization, Copy, Assignment

Function Override

Inner Class

Array

Java Data Structure

String and StringBuilder

OOP

1. JVM basic
1.1 class loader

a. Loading :
The Class loader reads the .class file, generate the
corresponding binary data and save it in method area.

After loading .class file, JVM creates an object of type Class
to represent this file in the heap memoryThis Class object
can be used by the programmer (use getClass() method
of Object class) for getting class level information like
name of class, parent name, methods and variable
information etc.

b. Linking
Performs verification, preparation, and resolution.

Verification : It ensures the correctness of .class file i.e. it
check whether this file is properly formatted and generated
by valid compiler or not. If verification fails, we get run-
time exception java.lang.VerifyError.

Preparation : JVM allocates memory for class variables and
initializing the memory to default values.
Resolution : It is the process of replacing symbolic
references from the type with direct references. It is done
by searching into method area to locate the referenced
entity.

c. Initialization
In this phase, all static variables are assigned with their values defined
in the code and static block(if any). This is executed from top to bottom
in a class and from parent to child in class hierarchy.

https://www.geeksforgeeks.org/object-class-in-java/

1.2 JVM Memory

a. Method area : In method area, all class level information like class
name, immediate parent class name, methods and variables
information etc. are stored, including static variables. There is only one
method area per JVM, and it is a shared resource.
b. Heap area : Information of all objects is stored in heap area. There
is also one Heap Area per JVM. It is also a shared resource.
c. Stack area : For every thread, JVM create one run-time stack which
is stored here. Every block of this stack is called activation record/stack
frame which store methods calls. All local variables of that method are
stored in their corresponding frame. After a thread terminate, it’s run-
time stack will be destroyed by JVM. It is not a shared resource.
d. PC Registers : Store address of current execution instruction of a
thread. Obviously each thread has separate PC Registers.
d. Native method stacks :For every thread, separate native stack is
created. It stores native method information.

1.3 Execution Engine

Execution engine execute the .class (bytecode). It reads the byte-
code line by line, use data and information present in various
memory area and execute instructions. It can be classified in three
parts

2. Key Words and Statement in Java
a. Static

The static key word works similarly in Java as it is in
c++, however, below are the difference.

1) Static Block: Unlike C++, Java supports a special block, called
static block which can be used for static initialization of a class.
This code inside static block is executed only once. It is
executed when the first time you make an object of that class or
the first time you access a static member of that class.

2) Static Local Variables: Unlike C++, Java doesn’t support static
local variables. Static class: See inner class

b. Enum in Java compared to c++
1) Enums in C/C++ are plain constant Integers.
2) Enums in Java are objects - they can have methods (with

different behavior from one enum instance to the other).
3) Every enum internally implemented by using Class.

Class Color
{

Public static final Color RED = Color();
Public static final Color GREEN = Color();

}
Color c1 = Color.RED;

4) enum can contain constructor and it is executed separately
for each enum values. All the values are static so the
constructor is called at the time of enum class loading. The
constructor is private so user can not create objects on
their own. In the Color example, there are only two Color
objects existing which are red and green, no other enum
objects are created.

5) enum type can be passed as an argument
to switch statement.

6) values(), ordinal() and valueOf() methods :
These methods are present inside java.lang.Enum.
values() method can be used to return all values present
inside enum.

ordinal() method return the index according to the order it
is defined.

7) Enum can have abstract method and each of the values
can override it.

c. Final
Similar to const in c++, the difference is

1) It can be initialized after declaration
2) Final key word in front of class member function mean no

overriding.Final can not put after the function name as it is in c+
+

3) Final key word in front of class definition means no
extend(inheritance)

d. Package
Package is a mechanism to encapsulate a group of classes, sub
packages and interfaces. The files with package keyword followed by the
same package name belong to the same package.

e. Modifier: public private protected
Same
Class

Package Derived
class
same
package

Derived
class
different
package

world

Default(package
)

Yes Yes Yes No No

Public Yes Yes Yes Yes Yes
Protected Yes Yes Yes Yes No
Private Yes No No No No

f. Abstract vs interface
Abstract Interface
Can have abstract and non-
abstract methods.

Can only have abstract methods.

Does not support multiple
inheritance.

Supports multiple inheritance.

Can have non-final, non-static
variable

Only have static and final
variable.

Can provide the implementation

of interface.

3. Garbage Collector
a. To make an object eligible for garbage collector
3.1 Object created inside a method and is not return as a

reference to the object
3.2 Reassigning the reference variable.
3.3 Nullifying the reference variable.
3.4 Anonymous object : The reference id of an anonymous

object is not stored anywhere. Hence, it becomes
unreachable.

b. Request JVM to run garbage collector
When JVM runs Garbage Collector, we can not expect. So we can also request JVM
to run Garbage Collector. There are two ways to do it :
3.4.1 Using System.gc() method :
3.4.2 Using Runtime.getRuntime().gc() method :

c. Mark and sweep:
1) All the objects have their marked bits set to false.
2) Traverse all the objects starting with root object, then mark all the

objects that have been reached to true.
3) Non reachable objects are cleared from the heap.

Disadvantage:
Normal program execution is suspended while the garbage collection
algorithm runs.

4. Initialization, Copy, Assignment
4.1 Initialization
a. Constructor in Java compared to C++

1) Java constructor is only called by new operator. While in c+
+ constructor is automatically inserted by the compiler
when a variable is defined.

2) There is no initialization list in java constructor.
b. Inline Initialization

1) Java can initialize a member variable using inline field
initialization

2) Static fields can initialized in static block or inline filed
initialization.

c. Initialization Block
Initialization Block is needed when
1) We have many constructor with different parameters then

we can put the common pieces that every constructor has
into the initialization block so we avoid writing the same
code for every constructor.

2) Anonymous class since there is no explicit object.
d. Order of initialization
1) static initialization blocks of super classes
2) static initialization blocks of the class
3) instance initialization blocks of super classes
4) constructors of super classes
5) instance initialization blocks of the class
6) constructor of the class.

5. Override:
a. Definition and Usage

All non-static method in java are by default “virtual”(as in C++), which
allows us to override. There are 3 types of functions that are not
allowed to be overridden.
1) Functions with final cannot be overridden. This is what final means.
2) Functions with private keyword cannot be overridden as the derived
class has no access to it.
3) Functions with static keyword cannot be overridden as it belongs to
the class itself and does not involve object instance. A static method in
the derived class that overrides the method in base class hides the
method in base class.
4) Override must have the same argument list and return type.
5) The overriding method in derived class has to have access modifier
with more access that the method in the base class
6) If the super-class overridden method does not throws an exception,
subclass overriding method can only throws the unchecked exception,
throwing checked exception will lead to compile-time error. If the super-
class overridden method does throws an exception, subclass overriding
method can only throw same, subclass exception.
b. Frequently Used Override functions
1) Equals
2) toString

https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/

6. Inner Class
a. Definition and usage
Inner class is used when this class is solely needed by the outsider class.
In other words, the outsider class owns the inner class.
b. Static inner class
What static means for inner class is similar to static field and method.
Static inner class belongs to the whole outsider class, and we do not need
to have an instance of outsider class to access the inner class object.
c. Scope
The scope of a nested class is bounded by the scope of its enclosing
class. Thus in above example, class NestedClass does not exist
independently of class OuterClass.
A nested class has access to the members, including private members, of
the class in which it is nested. However, reverse is not true i.e. the
enclosing class does not have access to the members of the nested class.

7. Array
a. Key difference in array between c++ and Java

 1) Java array is aware of its size while a C++ array is not.
 Every Java array has a field named length.

 2) A Java array prevents a programmer from indexing the array
out of bounds while a C++ does not. The range checking
comes at the prices of having a small amount of overhead.

 3) In C++ it is possible to create an array of fully constructed
objects in a single operation while it is not possible to do
this in Java.

 Example:
 Employee[] emp = new Employee[5]

 //comment: emp is a reference which points to an array of
reference of Employee. The array has a size of 5 and the
reference of Employee is initialized to null.
for(int i=0; i< emp.length; i++)

 {
 emp[i] = new Employee();
 }

 // comment Each object is created or instantiated one at a
time with the "new" operator and the address of each
object is stored in the array

 b. Frequently used functions

(1) sort

 Arrays.sort(T[] a, Comparator<? Super T> c)

 The parameter are an array of primitives or objects, and a
comparator

(2) toString()

Returns a string representation of the contents of the specified
array. The string representation consists of a list of the array’s
elements, enclosed in square brackets (“[]”). Adjacent elements
are separated by the characters “, ” (a comma followed by a
space). Returns “null” if a is null.

(3) List.toArray()

 ArrayList and LinkedList(Both implement List) have toArray()
method to convert List to java Array

 (4)Arrays.asList()
 Convert primitive array to list.

8. Java Data Structure
8.1 Collection Framework

 Interface java.lang.Iterable

 Interface Collection

 Interface List

 Class ArrayList

 Class LinkedList (also implements Deque)

 Class Vector

 Class Stack (legacy class, use Deque ,
which is more powerful)

 Interface Set

 Class HashSet

 Class LinkedHashSet

 Interface SortedSet

 Interface NavigableSet

 Class TreeSet

 Class EnumSet

 Interface Queue

 Class PriorityQueue

 Interface Deque

 Class LinkedList (also implements List)

 Class ArrayDeque
 Interface BlockingQueue

 Class ArrayBlockingQueue
 Class PriorityBlockingQueue
 Interface BlockingDeque

 Class LinkedBlockingDeque
 Interface Map

 Class HashMap

 Interface SortedMap

 Interface NavigableMap

 Class TreeMap

8.2 ArrayList, Linkedlist, Vector, ArrayDeque
a. Function summary

ArrayList LinkedList ArrayDeq
ue

size(), isEmpty() Y Y Y
contains() Y Y Y
Iterator(),
 .hasNext(),.next
()

Y Y Y

add() Y Y Y
get(), set() Y Y N
getFirst(),getLast
()

N Y Y

offerFirst(),
offerLast()

N Y Y

pollFirst(),
pollLast()

N Y Y

peekFirst(),
peekLast()

N Y Y

removeFirst(),
removeLast(),

N Y Y

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingDeque.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingDeque.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingDeque.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/PriorityBlockingQueue.html

b. ArrayList vs. LinkedList

ArrayList LinkedList
Interface Java List Java List and Queue
Underlying data
structure

Resizable Array Doubly linked list

Fast insertion No O(n) Yes O(1)
Fast access Yes O(1) No O(n)

c. ArrayList vs. Vector

ArrayList Vector ArrayDeq
ue

Synchronized No Yes No
Increment
when full

50% of
current size

100% of current
size

100% of
current
size

Fast in
operation

Yes No, because it
is synchronized
in
multithreading

d. ArrayList vs LinkedList vs ArrayDeque
The difference of these three is similar to vector, list, and
deque in c++

8.3 Set(HashSet, LinkedHashSet, TreeSet,
EnumSet)
 vs Map(HashMap, LinkedHashMap, TreeMap,
EnumMap,)
a. Functions

Set Map
Size(), isEmpty() Y Y
iterator Y N
hashCode() Y Y
EntrySet(),
keySet(), value(),

N Y

Contains() Y N
containsKey(),
containsValue(),
get()

N Y

add() Y N
Put() N Y
Remove() Y Y
Replace() N Y

b. LinkedHashSet vs LinkedHashMap
Internally has a before and after reference to track the
insertion order

c. Difference between HashSet/Map,
LinkedHashSet/Map, TreeSet/Map and HashTable

HashSet/Map HashTable LinkedHashSet/
Map

TreeSet/
Map

Interface Set/Map Set/Map Map Set->
SortedSet
Map->
SortedMa
p

Underlying
Data
Structure

Array of
chains of key
or object
<key,
value> while
the key and
array index
are linked by
Hashfunction

Array of
chains of
object <key,
value> while
the key and
array index
are linked by
Hashfunction

Array of chains
of objects(like
HashSet/Map
and HashTable)
plus a doubly
linkedlist store
before and after
objects

Red-Black
binary
tree of
keys or
object<ke
y, value>

Way to
compare

Need to
override
equal() and
hashCode()

Need to
override
equal() and
hashCode()

Need to
override equal()
and hashCode()

Need to
have
compare()

Lookup
insertion time
complexity

O(1) O(1) O(1) O(log(n))

Allowing Null
Key

Yes No Yes No, but
allows null
values

Unique key
only

Yes Yes Yes Yes

Iteration Oder Random Random Insertion Order RB Tree
Synchronized No Yes No No

d. Usage guideline

1) Suppose you were creating a mapping of names to Person
objects. You might want to periodically output the people in
alphabetical order by name. A TreeMap lets you do this.

2) A TreeMap also offers a way to, given a name, output the next 10
people. This could be useful for a “More”function in many
applications.

3) A LinkedHashMap is useful whenever you need the ordering of
keys to match the ordering of insertion. This might be useful in a
caching situation, when you want to delete the oldest item.

4) Generally, unless there is a reason not to, you would use
HashMap. That is, if you need to get the keys back in insertion
order, then use LinkedHashMap. If you need to get the keys back
in their true/natural order, then use TreeMap. Otherwise,
HashMap is probably best. It is typically faster and requires less
overhead.

9. Comparable vs Comparator

Comparable Comparator
Sorting logic Sorting logic must

be in same class
whose objects are
being sorted. Hence
this is called natural
ordering of objects

Sorting logic is in
separate class.
Hence we can write
different sorting
based on different
attributes of objects
to be sorted. E.g.
Sorting using
id,name etc.

Implementation Class whose objects
to be sorted must
implement this
interface.

Class whose objects
to be sorted do not
need to implement
this interface. This
class objects can be
sorted by a third
class which
implements
Comparator of this
class.*(see below)

Sorting method int
compareTo(Object
o1)

1. positive – this
object is greater
than o1
2. zero – this object
equals to o1
3. negative – this
object is less than o1

int compare(Object
o1,Object o2)
Its value has
following meaning.
1. positive – o1 is
greater than o2
2. zero – o1 equals
to o2
3. negative – o1 is
less than o1

Calling method Collections.sort(List)
Here objects will be
sorted on the basis
of CompareTo
method

Collections.sort(List,
Comparator)
Here objects will be
sorted on the basis
of Compare method
in Comparator

public class CountrySortByIdComparator implements Comparator<Cou
ntry>{
 @Override
public int compare(Country country1, Country country2) {
 return (country1.getCountryId() < country2.getCountryId()) ? -1:
(country1.getCountryId() > country2.getCountryId()) ? 1:0 ;
 }

}

9.1 Priorityqueue
Priorityqueue in java uses priority heap data structure.
a. Constructor with Comparator

PriorityQueue(int initialCapacity, Comparator<?
super E> comparator)

b. Functions
contains(Object o)
clear()
Iterator<E>
Offer(E e)
Peek() //retrieve not remove
Poll() // retrieve and remove

c. Complexity
Offer and Poll both log(n)
 d. The data in the priority queue is not sorted, but only

 keeps the heap structure.

10. String
10.1 String and StringBuilder

a. Mutability
A String is immutable is java, while StringBuilder is
mutable in Java. When we concatenate two strings in Java,
a new string object is created in the string pool.

b. Equality
We can use equals() method in String for comparing two
string in java, but we can not use equals() method in
StringBuilder as StringBuilder does not override the
equals() method.

c. Comparable
String class implements the Comparable interface, while
StringBuilder does not.

d. Constructor
We can create a String object without using new operator,
which is not possible with a StringBuilder.

https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html#PriorityQueue(int,%20java.util.Comparator)
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/Comparator.html

String str = “abc” is equivalent to
Char data[] = {‘a’, ‘b’, ‘c’};
String str = new String(data);

e. Performance
StringBuilder is very fast than String while performing
concatenations. Because String is immutable in Java and
concatenation of a two String objects involves creation of a
new object.

f. Length
Since String is immutable, its length is fixed. But
StringBuilder has setLength() method which can be used to
change the StringBuilder object to the specified length.

11. OOP
11.1 Inheritance

1) In C++, we can create a class that doesn’t inherit from anything. In Java,
all classes inherit from the Object class directly or indirectly.

2) In Java, members of the grandparent class are not directly accessible. So
we can not call super.super.xxx()

3) In Java, protected members of a class “A” are accessible in other class
“B” of same package, even if B doesn’t inherit from A.

4) Java uses extends keyword for inheritance. Unlike C++, Java doesn’t
provide an inheritance specifier like public, protected or private. Like C++,
private members of base class are not accessible in derived class.

5) In Java, methods are virtual by default. In C++, we explicitly use virtual
keyword

6) Unlike C++, Java doesn’t support multiple inheritance.
7) In C++, default constructor of parent class is automatically called, but if we

want to call parametrized constructor of a parent class, we must
use Initializer list. Like C++, default constructor of the parent class is

automatically called in Java, but if we want to call parametrized
constructor then we must use super to call the parent constructor.

12. Design Pattern
12.1 Singleton Pattern

a. Def
This pattern is needed when we would like to have only
ONE instance of the class. This is done by

(1)Make the constructor private
(2)Have a static instance of the class itselfIt is usually

used in the logger.
b. Usage and Examples

(1)Logger class that writes the log file
(2) java.lang.Runtime

12.2 Factory Pattern
a. Def

b. Example

abstract class Product
{

public abstract Product createProduct();
...

}

class OneProduct extends Product
{

...
static
{

ProductFactory.instance().registerProduct("ID1", new
OneProduct());

}
public OneProduct createProduct()
{

return new OneProduct();

}
...

}

class ProductFactory
{

private HashMap m_RegisteredProducts = new HashMap();
public void registerProduct(String productID, Product p) {

m_RegisteredProducts.put(productID, p);
}

public Product createProduct(String productID){

((Product)m_RegisteredProducts.get(productID)).createProduct();
}

}

12.3 Observer Pattern
a. Def

If Class B needs to change something as long as A has
some changes, we can name a field in class A called
“Obserers”, and put B as an observer of A. Then A has a
notify method such that when A has some change, notify
method is called to ask B to run the update function to get
the corresponding update.

b. Examples
class Class A
{
 ArrayList<Observer> observerList;
 public A() {
 observerList = new ArrayList<Observer>();
 }

 @Override
 public void registerObserver(Observer o) {
 observerList.add(o);

 }

 @Override
 public void unregisterObserver(Observer o) {
 observerList.remove(observerList.indexOf(o));
 }

 @Override
 public void notifyObservers()
 {
 for (Iterator<Observer> it =
 observerList.iterator(); it.hasNext();)
 {
 Observer o = it.next();
 o.update();
 }
 }

