
1 Transmission Line

The transmission line in general refers two conductor line with some kind of
dielectric materials in between. The two conductor lines build oscillating voltage
across each other and E-M waves are transmitted inside the dielectric materials.
When the oscillating voltage signal has a frequency high enough such that the
length of conducting wire is comparable to signal’s wavelength, we have to use
the transmission line to transmit the signal. The reason is
(1) When at high frequency, due to skin effect, the signal only lies on and near
the surface of the conduction, inside the conductor, the amplitude of the signal
decays very rapidly. This effect cause the signal to lose most of the power when
being conducting use wires.
(2) When at high frequency, the wire has a high inductance impedance, the
conductor can not be treated as it is in the case of DC.

1.1 Transmission Line Model

a. Wave equation
For most common transmission lines, they can be considered as a set of series
inductors, shunt capacitance and resistors:
The distributed resistance R of the conductors is represented by a series resistor
(expressed in ohms per unit length).
The distributed inductance L (due to the magnetic field around the wires, self-
inductance, etc.) is represented by a series inductor (in henries per unit length).
The capacitance C between the two conductors is represented by a shunt capac-
itor (in farads per unit length).
The conductance G of the dielectric material separating the two conductors is
represented by a shunt resistor between the signal wire and the return wire (in
siemens per unit length).
We consider an ideal case in which the resistance R and G are negligible meaning
the transmission line is lossless. And we also assume the inductor and capacitor
both have unit length. Based on Maxwell’s equation, at a certain point z of the
transmission line, the voltage across the two conductor line V and the current
I satisfy the following equation

∂V

∂z
= −L∂I

∂t
∂I

∂z
= −C ∂V

∂t

It is possible to show that V (z) and I(z) satisfy

V (z) = V1e
−jkz + V2e

+jkz

I(z) =
V1

Z0
e−jkz − V2

Z0
e+jkz

Where Z0 =
√

L
C

b. Characteristic impedance
In DC circuit, the well-known Ohm’s law tells us there is a simple and linear
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relationship between the current and voltage. In an AC circuit with capacitors
and inductors, however, both voltage and current change over time, which pre-
vents us to apply Ohm’s law directly as the current voltage relationship are not
linear anymore. That is why we define the characteristic impedance to general-
ize the Ohm’s in AC circuit.
Based on the derivation above, the characteristic impedance is

Z0 =

√
L

C

it is good to note that the characteristic impedance is it does not depend on
length. From the previous derivation we assume the capacitance and induc-
tance take the unit length. If they have real length ∆z, then the characteristic
impedance becomes

Z0 =

√
L∆z

C∆z
=

√
L

C

As we see the lengths are cancelled out leaving the impedance length indepen-
dent.

1.2 Reflection Coefficients and Impedance Matching

a. Reflection coefficients
When the voltage propagates along the transmission line, eventually it will hit
the end of the transmission line. What happens next and how do we solve it? In
general, every EM problem can be answered by solving Maxwell’s equations plus
boundary conditions. In this particular case, we can solve it using wave equation
derived above based on Maxwell’s equations plus the Kirchhoff’s law as our
boundary conditions. When a wave reaches the boundary of two different media,
there usually exists reflection wave. Here we define the reflection coefficient as
ratio of refection voltage to the incident voltage. If a resistor ZL is connected
across two conductor wires at the end of the transmission line, then the refection
coefficients can be derived

Γ =
ZL + Z0

ZL − Z0

b. Refection examples in special cases
(1) When ZL =∞
When ZL = ∞, the end is open. When a current flows to the end point, the
Kirchhoff’s law requires that there must be an current with same magnitude
but in opposite direction. Therefore, the voltage of reflection wave Vr is equal
to the voltage of the incident wave Vi

Vr = Vi

In this case Γ = 1. We can check this by the definition of Γ

Γ =
ZL + Z0

ZL − Z0
=
∞+ Z0

∞− Z0
= 1

(2) When ZL = 0
When ZL = 0, at the end point, the voltage is always zero. By Kirchhoff’s law,
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there must be a refection wave that cancels the incident wave such that the total
voltage vanishes. So

Vr = −Vi

In this case, Γ = −1. We can also check this by the definition of Γ

Γ =
ZL + Z0

ZL − Z0
=

0 + Z0

0− Z0
= −1

c. Smith Chart The reflection coefficient Γ is a complex number and we can
write

Γ = |Γ|ejθ

If we define a normalized coefficient z = ZL

Z0
, then

z =
1 + |Γ|ejθ

1− |Γ|ejθ

Let Γ = Γr + jΓi, and z = r + jx, we have

r + jx =
1 + Γr + jΓi
1− Γr − Γi

If we equal the real part and imaginary part on both sides,

(Γr −
r

1 + r
)2 + Γ2

i = (
1

1 + r
)2

(Γr − 1)2 + (Γi −
1

x
)2 = (

1

x
)2

If we plot the Γ = 1 circle and two above circle in a complex coordinate graph,
we get Smith Chart. Any arbitrary point on the circle represent a value of z.

2 S parameters

Consider a two port system with port 1 and port 2. For example, the system
could be a band pass filter with one port as input, and the other port as out-
put. We define a1 and a2 to be the incident waves and the b1 and b2 to be the
reflected waves with the subscript being port number. In this case the relation-
ship between the reflected, incident power waves and the S-parameter matrix is
given by: (

b1
b2

)
=

(
S11 S12

S21 S22

)(
a1
a2

)
From definition above, we clearly see
when a2 = 0, then S11 is the reflection coefficient of port 1. when a1 = 0, then
S22 is the reflection coefficient of port 2.
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