1 Quick Review of Second Quantization

Second quantization is also called as occupation number representation. In this
formalism, the occupation number is written as operators. The formalism with-
out occupation number representation is called first quantization. I have been
long confused about the notation of second quantization. So I would like to
work with a few examples to understand the second quantization formalism.

1.1 Operators in Second Quantization

(1). One-body operator

In first quantization, the one body operator for N particles is
A N ~
H=> h(z)

In second quantization,

H= Z < alhlB > cles
a,B

where a, 8 are the single particle states.
(2). Two-body operator

In second quantization,

H= Z < a, fhly, 6 > c;rcgcfyrc}'
@,B8,7,6

We see using the second quantization, we change the summation over all the
individual particles to the summation over single particle states. This is the mo-
tivation of using second quantization formalism, because in many-body physics,
writing Hamiltonian in single particle states helps us to understand the many-
body interaction more easily.

1.2 Examples

a. Kinetic energy operator
Consider a system with two Fermions, occupying two states ¢; and ¢-, then the
wave function can be written as a Slater determinant.

1 ¢1($1) ¢1(172)

P(x1,22) = V2 |b2(z1)  ¢a(x2)

The kinetic energy operator is

1
= ﬁ((ﬁl(m‘l)(f)g(l@) —¢a(z1)  P1(x2))

E’ = Z ﬁ(ml)



where h is —%Vz in atomic unit.
The total kinetic energy

< By, 20) [ H|D (21, 22) >=< (1, 22)|h(21)|® (21, 22) > + < ®(1, 22)|h(22)| P (21, 22) >

The first term is for particle one, and it expands to four terms. Based orthogo-
nality only two terms survive.

< @(on, @) @(r1,22) >= 5 < () he0ldn (1) + 5 < dalen)llan)la(an) >

From the last line of the expression we see the subscript z; is redundant as there
is no xo, so we can simplify

a 1 - 1 A
< (21, 22)[h(21)| P (21, 22) >= 5 < ¢1lhlpr > t5 < G2|h|d2 >

Same expression for particle two
5 1 - 1 R
< O(21, m2)|h(22)| P (21, 22) >= 5 < p1|h|p1 > tg < P2|h|p2 >
Therefore,
< By, 29) [H|D (21, 22) > =< ¢1h|¢1 > + < po|h|do >
= Z < ¢a|h|¢a >
So we see that for many-body states built by single particle state, the expecta-

tion value of an one body operator is the summation over the expectation value
of single particle states.

Now we turn to second quantization formalism.

H= Z < alhlB > cles
a,B

Since
< alh|f >=< alh|B > do,p =< a|h|la >
Then

H= Z < alhlB > ctes
a,B

= Z < alhla > cte,
[}

We know that ¢! ¢, is the occupation number on state «. Since we have fermions,
so ¢t ¢, =1. Therefore,



H= Z < alhlB > ctes

:Z<a\h|a>

We see the derivation is much much simpler using the second quantization.
b. Potential energy operator
We use the basis of plane wave states confined in volume Q = L3.

¢k(r) _ %eikr

Where

2
k= %(l,m,n)

The potential energy involves the matrix element
Vit ke ka ka
1 ’ . . 4 ’ . . 4
— @ /d3r/d3r e—zk1~re—zk2~r u(r —r )ezks-rezk4~r
1 . .
— @ /d3rel(—k1—k2+k3+k4)~r/d3Rel(—k2+k4)'Ru(R)

1
= 5(5(—k1 — ko + k3 + k4)ﬁ(k2 — k‘4)

Where R =1 — 1

a(q) = /dSRu(R)e_iq'T

This gives the second quantized operator
1 ~
V= 20 Z (kg — k4)czlcz2ckgck4
k1,k2,ks,ka
let ko — k4 = q, then ko = k4 + q, while k1 + ko + ks + k4 =0, s0 k1 = k3 — q.
QQ Z cks qck4+qck36k4 QQ Z ck+q k K’ Ck
k3,ka,q kk' q

So from the second quantization, we clearly see through Coulomb interaction,
two particles exchange momentum ¢, and the total momentum is conserved.



