
1 Quick Review of Second Quantization

Second quantization is also called as occupation number representation. In this
formalism, the occupation number is written as operators. The formalism with-
out occupation number representation is called first quantization. I have been
long confused about the notation of second quantization. So I would like to
work with a few examples to understand the second quantization formalism.

1.1 Operators in Second Quantization

(1). One-body operator
In first quantization, the one body operator for N particles is

Ĥ =

N∑
i

ĥ(xi)

In second quantization,

Ĥ =
∑
α,β

< α|h|β > c+α cβ

where α, β are the single particle states.
(2). Two-body operator

Ĥ =
1

2

N∑
i

N∑
j

ĥ(xi, xj)

In second quantization,

Ĥ =
∑

α,β,γ,δ

< α, β|h|γ, δ > c+α c
+
β c

+
γ c

+
δ

We see using the second quantization, we change the summation over all the
individual particles to the summation over single particle states. This is the mo-
tivation of using second quantization formalism, because in many-body physics,
writing Hamiltonian in single particle states helps us to understand the many-
body interaction more easily.

1.2 Examples

a. Kinetic energy operator
Consider a system with two Fermions, occupying two states φ1 and φ2, then the
wave function can be written as a Slater determinant.

Φ(x1, x2) =
1√
2

∣∣∣∣φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣ =
1√
2

(φ1(x1)φ2(x2)− φ2(x1) φ1(x2))

The kinetic energy operator is

Ĥ =

N∑
i

ĥ(xi)
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where ĥ is − 1
2∇

2 in atomic unit.
The total kinetic energy

< Φ(x1, x2)|Ĥ|Φ(x1, x2) >=< Φ(x1, x2)|ĥ(x1)|Φ(x1, x2) > + < Φ(x1, x2)|ĥ(x2)|Φ(x1, x2) >

The first term is for particle one, and it expands to four terms. Based orthogo-
nality only two terms survive.

< Φ(x1, x2)|ĥ(x1)|Φ(x1, x2) >=
1

2
< φ1(x1)|ĥ(x1)|φ1(x1) +

1

2
< φ2(x1)|ĥ(x1)|φ2(x1) >

From the last line of the expression we see the subscript x1 is redundant as there
is no x2, so we can simplify

< Φ(x1, x2)|ĥ(x1)|Φ(x1, x2) >=
1

2
< φ1|ĥ|φ1 > +

1

2
< φ2|ĥ|φ2 >

Same expression for particle two

< Φ(x1, x2)|ĥ(x2)|Φ(x1, x2) >=
1

2
< φ1|ĥ|φ1 > +

1

2
< φ2|ĥ|φ2 >

Therefore,

< Φ(x1, x2)|Ĥ|Φ(x1, x2) > =< φ1|ĥ|φ1 > + < φ2|ĥ|φ2 >

=
∑
α

< φα|ĥ|φα >

So we see that for many-body states built by single particle state, the expecta-
tion value of an one body operator is the summation over the expectation value
of single particle states.

Now we turn to second quantization formalism.

Ĥ =
∑
α,β

< α|h|β > c+α cβ

Since

< α|h|β >=< α|h|β > δα,β =< α|h|α >

Then

Ĥ =
∑
α,β

< α|h|β > c+α cβ

=
∑
α

< α|h|α > c+α cα

We know that c+α cα is the occupation number on state α. Since we have fermions,
so c+α cα =1. Therefore,
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Ĥ =
∑
α,β

< α|h|β > c+α cβ

=
∑
α

< α|h|α >

We see the derivation is much much simpler using the second quantization.
b. Potential energy operator
We use the basis of plane wave states confined in volume Ω = L3.

φk(r) =
1√
Ω

eik·r

Where

k =
2π

L
(l,m, n)

The potential energy involves the matrix element

Vk1,k2,k3,k4

=
1

Ω2

∫
d3r

∫
d3r

′
e−ik1·re−ik2·r

′

u(r− r
′
)eik3·reik4·r

′

=
1

Ω2

∫
d3rei(−k1−k2+k3+k4)·r

∫
d3Rei(−k2+k4)·Ru(R)

=
1

Ω
δ(−k1 − k2 + k3 + k4)ũ(k2 − k4)

Where R = r − r′

ũ(q) =

∫
d3Ru(R)e−iq·r

This gives the second quantized operator

V =
1

2Ω

∑
k1,k2,k3,k4

ũ(k2 − k4)c+k1c
+
k2
ck3ck4

let k2 − k4 = q, then k2 = k4 + q, while k1 + k2 + k3 + k4 = 0, so k1 = k3 − q.

V =
1

2Ω

∑
k3,k4,q

ũ(q)c+k3−qc
+
k4+q

ck3ck4 =
1

2Ω

∑
k,k′ ,q

ũ(q)c+k+qc
+
k′−qck

′ ck

So from the second quantization, we clearly see through Coulomb interaction,
two particles exchange momentum q, and the total momentum is conserved.
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