
The objective of this article is to provide a comprehensive review of the Hall
effect family. Grasping the intricate physics underlying the various manifesta-
tions of the Hall effect is no straightforward feat. In this regard, we present a
step-by-step analysis. The structure of the entire article is as follows:
1) We commence by delving into the conventional theory of conductivity, span-
ning from classical principles to the realm of quantum mechanics.
2) Upon entering the quantum realm, we proceed to derive the current opera-
tor, encompassing two distinct contributions. The initial term corresponds to
the gradient of the energy eigenvalue in k-space, impacting the conductivity of
most metals. The subsequent term, connected to the Berry curvature, assumes
significance in situations where time-reversal symmetry is violated.
3) It is worth noting that the Berry curvature-associated second term possesses
a captivating property. The integration of the Berry curvature across the Bril-
louin zone, summed over all bands, results in an integer value of 2π.

1 Brief Summary of Conductance Theory

To elucidate conductivity, physicists have formulated multiple models, spanning
from the classical and semiclassical to the quantum approaches. These models
can be summarized as follows:
1) In classical model, the electrons are treated classically, and the movement is
governed by the Newton’s law and the forces on the electrons are described by
electromagnetism . This model is good enough to explain the Ohm’s law.
2) The semiclassical model views electrons as both particles and waves. Elec-
tron movement is likened to wavepacket propagation, with the electron’s velocity
representing the group velocity of the wave. This model leverages particle-wave
duality and effectively accounts for conduction in metals.
3) In the quantum model, velocity is represented by the expectation value of
the velocity operator within a given wavefunction. This theoretical approach
is essential for deriving Hall conductance and comprehending the topological
intricacies of Hall conductance.

2 Classical Conductance Theory Example: Hall
Effect

We consider the electrons inside conductors. When we apply both an electric
field E and a magnetic filed B, the electrons have the equation of motion fol-
lowing the Newtons’ law

m
dv

dt
= −eE− ev ×B−m

v

τ

The first term in right hand side is the force by the electric field, and the second
term is the force by the magnetic field. The third term electron collision by the
ions. When collision happens, the momentum of the electron changes to zero
within a certain mean free time τ . At the equilibrium states, we have dv

dt = 0.
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The velocity satisfies

eτ

m
v ×B+ v = −eτ

m
E (1)

As v = (vx, vy), so the above equation can be written as

vx +
eτ

m
vyB = −eτ

m
Ex

The current density J is related to the velocity by

J = −nev

So

jx +
eτB

m
jy =

ne2τ

m
Ex

We define the conductivity as

J = σE

so σxx = ne2τ
m , σxy = ne

B .

3 Hall conductivity of 2D electrons

Solution to 2D electron system subject to a magnetic field
A Hamiltonian for 2D electrons in a magnetic field A = xBŷ is

H =
1

2m
(p2x + (py + eBx)2)

Because this Hamiltonian commutes with py, so they share the same eigenstates,
therefore, we can write the solution for the Hamiltonian as

ψk(x, y) = eikyfk(x)

Hψk(x, y) =
1

2m
(p2x + (ℏk + eBx)2)ψk(x, y) = Hkψk(x, y)

Hk =
1

2m
p2x +

mω2
B

2
(x+

ℏk
eB

)2

This Hk is the Hamiltonian for a harmonic oscillator in the x direction, with the
center displaced form the origin. The solution to Hk is very similar to harmonic
oscillator. The energy eigenvalues are

En = ℏωB(n+
1

2
)
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where ωB = eB
m . And the eigenstate wavefunctions are

ψn,k(x, y) ∝ eikyHn(x+
ℏk
eB

)e−(x+ ℏk
eB )2eB/2ℏ

Adding an electric filed for 2D electron system subjected to a mag-
netic field

H =
1

2m
(p2x + (py + eBx)2) + eEx

Its solution is again similar to harmonic oscillator with additional shift

ψ(x, y) = ψn,k(x+mE/eB2, y)

and the energies are

En,k = ℏωB(n+
1

2
)− eE(

ℏk
eB

+
eE

mω2
B

) +
m

2

E2

B2

Since we get the wavefunction and eigenenergy, there are two ways to find out
the current. One way is to use the semiclassical approach. We can calculate
group velocity given a wavevector k

vy =
1

ℏ
∂En,k

∂k
= −E

B

So we surprisingly see add an electric filed in x direction generates the movement
in y! To find out the total current in y direction, we have to know the degeneracy,
which means how many electrons are in the state with the momentum k to k +
dk. In y direction, electrons are free particle with momentum k confined in a
finite size Ly. So

dn

dk
=
Ly

2π

The total current is

Iy = e
E

B

∫
dn

dk
dk =

eELy

2πB

∫
k

The range of k in the above integral is tricky. From the wavefunction, we
see the center of the harmonic oscillator in x direction is x = −kℏ/eB, while
0 ≤ x ≤ Lx, then −LxeB/ℏ ≤ k ≤ 0.

Iy =
eELy

2πB

∫ 0

−LxeB/ℏ
k =

e2

h
EA

The second way is purely quantum approach. We need the following steps in
order to derive the expression of the current. 1) In quantum mechanics, we
represent every physical quantity using an operator. So the first step is to find
out the expression of velocity operator.
2) The current is the expectation value of its operator, therefore we need to know
the wavefunction. Here we employ the time-dependent perturbation theory in
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order to know how the wavefunction changes overtime.
3) Thirdly, we evaluate the expectation of the current operator then analyze
why the conductivity is quantized.
Derivation of velocity operator
In quantum mechanics, the velocity operator is defined as

v =
∂H

∂p
=
∂H

ℏ∂k

There exist several ways to understand this. First, we can recall the equation of
motion in analytical mechanics. Given a Hamiltonian, the equation of motion
is

v = ṙ =
∂H

∂p

Another way is using Heisenburg equation of motion, which is the counterpart of
analytical mechanics’ equation of motion in quantum mechanics. The velocity
operator given by Heisenburg equation of motion is

v =
dr

dt
=
i

ℏ
[H, r]

In momentum space, it becomes

v(k) = e−ik·r i

ℏ
[H, r]eik·r =

1

ℏ
∇kH(k, t)

Wavefunction subject to adiabatic evolution
The wave function is subject to the time-dependent Schrodinger equation.

iℏ∂t|Ψ(t) >= H(t)|Ψ(t) >

Suppose when t = t0, the instantaneous eigenstates are |un(k, t) >, then the
wavefunction can be written as linear combination of all instantaneous states
with coefficients an(t) times a time evolution factor.

|Ψ(t) >=
∑
n

exp(
1

iℏ

∫ t

t0

dt
′
En(t

′
))an(t)|un(k, t) >

Then we consider adiabatic approximation which means the vector R(t) varies
with time very slowly and apply the time-dependent perturbation theory. After
a few steps we have

|Ψ(t) >= exp(− i

ℏ

∫ t

t0

dt
′
En(t

′
))(|un(k) > −iℏ

∑
n′ ̸=n

|u
′

n(k) >
< u

′

n(k)| ∂∂t |un(k) >
En − En′

)

The expectation value of the velocity

v̄(k, t) =
1

ℏ
∇kEn(k)− i

∑
n′ ̸=n

(< un|
∂H

∂k
|u

′

n >
< u

′

n| ∂∂t |un >
En − En′

− c.c.)

Using the identity

< un|∇kH|um >= (En − Em) < ∇kun|um >
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v̄(k, t) =
1

ℏ
∇kEn(k)− i(<

∂un
∂k

|∂un
∂t

> − <
∂un
∂t

|∂un
∂k

>) (2)

Where the second term is the Berry phase. The current operator is

j = −2e
∑

allbands

∫
BZ

dk

2π
f(k)v(k)

The integral is taken over the first Brillouin zone denoted by BZ. We need to
consider several cases to discuss the current.
1) If the system preservers time reversal symmetry and space reversal symmetry,
then the second term in Eqn. 2 vanishes. In this case, if the bands are fully
occupied, it is an insulator. If the band are not fully occupied, it is an conductor.
The semiconductor is something between this two where the thermal excitation
can promote the electron going from valence band to the conduction band so
the not fully occupied conduction band contributes the current.
2) If all the bands are filled, but the system breaks time and space reversal
symmetry, then first term vanishes, the second term is non-trivial. This is what
contributes the current in quantum Hall effect.
Quantized current
When the first term of the velocity vanishes(in the case that all bands are fully
occupied), the expression of velocity reduces to

v̄(k, t) = −i(< ∂un
∂k

|∂un
∂t

> − <
∂un
∂t

|∂un
∂k

>) (3)

Using the relationship

∂t = ∂tk · ∇k = − e
ℏ
E× Ωn(k)

where

Ωn(k) = ∇k× < un(k)|i∇k|un(k) >

vn(k) = − e
ℏ
E× Ωn(k)

We plug the expression of vn into the expression of current j, we have

j = −2e
∑

allbands

∫
BZ

dk

2π
f(k)vn(k) =

e2

h

1

2π

∑
n

∫
BZ

dkE× Ωn(k)

Therefore the conductivity is

σ =
e2

h

1

2π

∑
n

∫
BZ

dkΩn(k)

If we consider the case of 2 dimensional electron gas, then

σ =
e2

h

1

2π

∑
n

∫
BZ

dkΩn(kx, ky)
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Since the integral runs over the first Brillouin zone, and

Ωn(kx, ky) = Ωn(kx + π, ky) = Ωn(kx, ky + π)

Hence, the first Brillouin zone forms a closed torus. The integral over a closed
torus gives an multiple integer of 2π. So

σH = ν
e2

h

Where ν is an integer.
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