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1 Basic of Fourier Transform

Fourier Series
If x(t) = x(t+ T ) then x(t) can be written as

x(t) =

+∞∑
−∞

cke
2πikt
T

i is the imaginary unit, and k is an integer. The above expression is eligible
because e

2πikt
T is a periodic function

e
2πikt
T = e

2πik(t+T )
T

Each basis e
2πikt
T represents a signal with frequency fk = k

T . So the interval
between each adjacent frequency ∆f = 1

T . Based on orthogonality, we can get
ck

ck =
1

T

∫ T

0

x(t)e−i
2πkt
T dt

Fourier Series: Example

x(t) = cos(2πf0t) =
1

2
(ei2πf0t + e−i2πf0t)

where f0 = 1
T

ck =
1

T

∫ T

0

x(t)e−i
2πkt
T dt

=
1

T

∫ T

0

1

2
(e

2iπt
T + e

−2iπt
T )e−i

2πkt
T dt

Only terms with k = +/-1 in the above expression can survive, so

c1 =
1

T

∫ T

0

1

2
dt =

1

2

Similarly, c−1 = 1
2 .

Fourier Transform
We can generalize the Fourier series to non-periodic functions. We define the
Fourier transform as

F(f) =

∫ ∞
−∞

x(t)e−2πiftdt

1



With the inverse Fourier transform defined as

x(t) =

∫ ∞
−∞
F(f)e2πiftdf

To see why the above makes sense, it is easy to prove the identity.

x(t
′
) =

∫ ∞
−∞
F(f)e2πift

′

df

=

∫ ∞
−∞

(

∫ ∞
−∞

x(t)e−2πiftdt)e2πift
′

df

=

∫ ∞
−∞

x(t)(

∫ ∞
−∞

e−2πifte2πift
′

)df

=

∫ ∞
−∞

x(t)δ(t− t
′
)dt

= x(t
′
)

Fourier Transform: Example
1. Constant Function

x(t) = 1

F(f) =

∫ ∞
−∞

x(t)e−2πiftdt

=

∫ ∞
−∞

e−2πiftdt

= lim
a→∞

∫ a

−a
e−2πiftdt

= lim
a→∞

1

−2πift
e−2πift|a−a

= lim
a→∞

1

−2πifa
(e−2πifa − e2πifa)

= lim
a→∞

1

2πifa
(e2πifa − e−2πifa)

= lim
a→∞

2
sin(2πfa)

2πfa

= 2 lim
a→∞

sin(2πfa)

2πfa

= δ(f)

2. Trigeometic Function Take the same x(t) as above in the discrete case

x(t) = cos(2πf0t) =
1

2
(e2iπf0t + e−2iπf0t)
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F(f) =

∫ ∞
−∞

1

2
(e2iπf0t + e−2iπf0t)e−2iπftdt =

1

2
δ(f − f0) +

1

2
δ(f + f0)

Discrete Fourier Series
The above is the Fourier transform in continuous case. In discrete case if x =
n∆t, where n = 1...N, and T = N∆t, then the Fourier series can be written as

x(n) =

+∞∑
−∞

cke
2πikn∆t
N∆t

=

+∞∑
−∞

cke
2πikn
N

ck =
1

N∆t

N∑
n=1

f(n∆t)e−i2πk
1

N∆tn∆td(n∆t) =
1

N

N∑
n=1

f(n)e−i2πk
n
N

This is the discrete Fourier series.
The interval in the frequency domain is

∆f = fk+1 − fk =
k + 1

T
− k

T
=

1

T
=

1

N∆t

Discrete Fourier Transform
In the discrete case, suppose we sample a signal N times within time T. We
divide time T into N time intevals with length being ∆t = N/T . Then we can
let t = n∆t, the integral in the Fourier transform becomes a summation. So we
write the Fourier transform as

F(f) =

N∑
0

x(n∆t)e−2πifn∆t T

N

In frequency domain, the frequency also becomes discrete, and same as the case
in discrete Fourier series, ∆f = 1

T . Another way of seeing ∆f is when we confine
the length of time domain to T, the function in time domain has to be periodic
function with period T. So we have

e2πif(n∆t+T ) = e2πifn∆t

This requires

2πfT = 2πk

where k is integer. This leads discrete frequencies

f =
k

T

and

∆f =
1

T
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Using f = k∆f , we can rewrite our Fourier transform

F(k∆f) =

N∑
0

x(n∆t)e−2πik∆fn∆t T

N

=

N∑
0

x(n∆t)e−2πikn/N T

N

The last step uses the fact ∆k∆t = 1
T
T
N = 1

N . Then we work out the Fourier
transform and inverse Fourier transform identity

x(n
′
∆t) =

N∑
k=0

F(k∆f)e2πikn
′
/N∆f

=

N∑
k=0

(

N∑
n=0

x(n∆t)e−2πikn/N T

N
)e2πikn

′
/N∆f

=

N∑
k=0

1

N
(

N∑
n=0

x(n∆t)e−2πikn/N )e2πikn
′
/N

=

N∑
k=0

1

N
x(n

′
∆t) Only the term n

′
= n survives

=
1

N
N

= 1

So we define discrete Fourier transform

F(k) =

N∑
n=0

x(n)e−2πikn/N

and the discrete inverse Fourier transform

x(n) =
1

N

N∑
n=0

F(k)e2πikn/N

Example
Let N = 4, and

x(n) = cos(2π
n

4
) =

1

2
(ei2π

n
4 + e−i2π

n
4 )

F(k) =
1

4

4∑
n=1

1

2
(ei2π

n
4 + e−i2π

n
4 )e−i

2πkn
4
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Similary to the continuous case, only terms with k = +/-1 in the above expres-
sion can survive, when k = 1

F(1) =
1

4

4∑
n=1

1

2
ei2π

n
4 e−i

2πn
4

=
1

4

1

2
4

=
1

2

What about case for k = −1? We define k = 1, 2, 3, 4 so k = −1 is not defined.
However, in discrete case we note c−1 = c3 due to the periodicity. Similarly, we
can calculate F(3) = 1

2 .
N is the total sample within time T.
Properties
1) To be eligible, f(x) has to be a period function with time T(with frequency
F = 1

T ) in both continuous case and discrete case. The requirement in discrete
case leads to uniform sampling theorem used in signal processing. The total
sampling time Tsampling has to be an integer multiple of T .

Tsampling = MT

while T = N
Fs

So

MT = N∆t

if we let ∆t = 1
Fs

, where Fs is the sampling frequency, and T = 1
F , we have

M

F
=
N

Fs

2) If x(n) is real, which means x(n) = x∗(n). We then substitute Fourier series
for both x(n) and x ∗ (n),

+∞∑
−∞

cke
2πi 1

T kx =

+∞∑
−∞

c∗ke
−2πi 1

T kx (1)

Since the summation on the right hand side is from −∞ to ∞, it is eligible to
replace k with k.

+∞∑
−∞

c∗ke
−2πi 1

T kx =

−∞∑
∞
c∗−ke

2πi 1
T kx (2)

Combine the above two equations 1 and 2, we can see ck = c∗−k. This means
they are complex conjugate: their magnitude are equal, their phase are oppo-
site. Namely ||ck|| = ||c−k||, φ(ck) = φ(c−k). Similarly, for discrete Fourier
transform, ||Fk|| = ||F−k||
3) Connection between complex representation and real representation.
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We have shown that for real signal ck = c∗−k and ck = |ck|ejθk , c−k = |ck|e−jθk .
And in complex representation, we can combine the term with index k and -k,

cke
j2πkF0t + c−ke

−j2πkF0t = 2|ck|cos(2πkF0t+ θk)

f(x) =

+∞∑
−∞

cke
2πikx
T

= c0 + 2

∞∑
k=1

|ck|cos(2πkF0t+ θk)

= a0 +

∞∑
k=1

(akcos(2πkF0t)− bksin(2πkF0t))

where a0 = c0, ak = 2|ck|cosθk, bk = 2|ck|sinθk.
4) F(k) = F(k+N), which means F(k) is periodic with period N. We remember
∆f = 1

T , so the period of N correspond to time length of N
T . Therefore, it is

sufficient enough for us to confine k to be within the range −N/2 < k ≤ N/2.
For all the integers of k

′
which are beyond this range, we can find an equivalent

integer of k which is within −N/2 < k ≤ N that satisfies F(k
′
) = F(k). With

sample frequency Fs = N
T , the maximum frequecy of the signal(bandwidth B)

we can tell is B = N
2T = Fs

2 . In other words, in order to capture the whole
bandwidth B of the signal, we must have Fs ≥ 2B. This is Nyquist sampling
theorem.
5) Power density

Px =
1

T

∫
|x(t)|2dt

=
1

T

∫
x(t)

∞∑
−∞

c∗ke
−j2πkF0t

=

∞∑
−∞

c∗k[
1

T

∫
x(t)e−j2πkF0t]

=

∞∑
−∞
|ck|2

When signal is real, then

Px =

∞∑
−∞
|ck|2

= a2
0 +

1

2

∞∑
k=1

(a2
k + b2k)
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2 Fast Fourier Transform

The above discrete Fourier transform requires a multiplication of N ×N matrix
and it has the time complexity of N2. The fast Fourier transform does the
same job as discrete Fourier transform but runs much faster as it has a time
complexity of NlogN . To see this, we start from the discrete Fourier transform

Xk =

N−1∑
n=0

xne
−i2πk nN

let

uk = e−i2πk
n
N

then we have the basis orthogonality

uTk1uk2 = Nδk1,k2

We recognize we can write Xk with even index terms and odd index terms

Xk = Even index parts + Odd index parts

=

N/2−1∑
m=0

x2me
− 2πi

N 2mk +

N/2−1∑
m=0

x2m+1e
− 2πi

N (2m+1)k

=

N/2−1∑
m=0

x2me
− 2πi
N/2

mk

(We can view this as Fourier Transform of N/2 even indexed points, where k is 0,1N/2)

+ e−
2πi
N k

N/2−1∑
m=0

x2m+1e
− 2πi
N/2

mk

(We can view this as Fourier Transform of N/2 odd indexed points, where k is 0,1N/2)

(Since each part is a Fourier transform of N/2 points, k has to be smaller than N/2)

= Ek + e−
2πi
N kOk

As noted, the above derivation is for k < N/2, a very similar derivation for
N/2 <= k < N leads to

Xk+N/2 = Ek − e−
2πi
N kOk

Now we have divided the FFT of N points to two FFT with N/2 points Keep
going till we reach the size to one, then combine together recursively. Let TN
be the time for Fast Fourier transform with N points, then we have

TN = 2TN/2 +N

By Master theorem, we can get TN = O(NlogN). Since we divded the size of
calculation by 2 each time until we reach the base case with size 1, the total
size has to be 2m, where m is an positive integer.
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3 Fourier Transform of Useful Functions

The Fourier Transform of Step Function
Let u(t) be a step function: u(t) = 1 when t ≥ 0, u(t) = 0 when t < 0. And its
derivative is a delta function

du(t)

dt
= δ(t)

Taking Fourier transform on both sides yields

2πifF(f) = 1

So

F(f) =
1

2πif
|f 6=0 + F(f)|f=0

Since any function with a different constant can have the same derivative, the
Fourier transform of the original function has to have a constant, which corre-
sponds to zero frequency component F (0). The constant component of function
u(t) is its offset to zero, which is 1/2. so

F (f) =
1

2πif
|f 6=0 +

1

2
δ(f)

The Fourier Transform of a Shifted Step Function
Let u(t) be a step function: u(t− τ) = 1 when t ≥ τ , u(t− τ) = 0 when t < τ .
Then

F(f) =

∫ ∞
−∞

u(t− τ)e−2πftdt

Let t
′

= t− τ , then

F(f) = e−2πifτ

∫ ∞
−∞

u(t
′
)e−2πft

′

dt
′

So we see this is a factor times Fourier transform of step function, therefore

F(f) = e−2πifτ (
1

2πif
|f 6=0 +

1

2
δ(f))

= e−2πifτ 1

2πif
|f 6=0 +

1

2
δ(f)
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The Fourier Transform of Gaussian

f(t) =
1√

2πσ2
e−

t2

2σ2

F(f) = e−2π2σ2f2

So the Fourier transform of a Gaussian function is another Gaussian function
but with different width.

The Fourier Transform of Dirac Comb

x(t) =

∞∑
n=−∞

δ(t− nT )

It is clearly that x(t) is periodic with period T. So we can expand that into
Fourier series

x(t) =

∞∑
k=−∞

cke
2πikt/T

Where

ck =
1

T

∫ T/2

−T/2
x(t)e−i

2πkt
T dt

=
1

T

∫ T/2

−T/2
δ(0)e−i

2πkt
T

=
1

T

So

x(t) =

∞∑
k=−∞

1

T
e2πikt/T

On the other hand, based on the formula of Fourier transform

F(f) =

∫ ∞∑
n=−∞

δ(t− nT )e−2πiftdt =

∞∑
n=−∞

e−2πinTf =

∞∑
n=−∞

e−2πinf/f0

Comparing the Fourier series of x(t) and the expression of F(f), they are the
same except T being changed to f0. Therefore we can conclude that F(f) itself
is also a Dirac comb, which is

F(f) = f0

∞∑
n=−∞

δ(f − nf0)
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The Fourier Transform of White Noise
Assuming noise we sample in time is n[m], where m = 0,... M-1. n[m] is a
Gaussian random variable with zero mean and variance σ2. The the FFT of
n[m] is

N [k] =
1

M

M−1∑
m=0

n[m]e−i2πmk/M

=
1

M

M−1∑
m=0

n[m](cos(2πmk/M)− i n[m]sin(2πmk/M))

The expected value is

E[N [k]] = E[
1

M

M−1∑
0

n[m]e−i2πmk/M ]

=
1

M

M−1∑
0

E[n[m]]e−i2πmk/M ]

= 0(because E[n[m]] = 0)

The variance of the real part is

V ar[R[N [k]]] = E[(
1

M

M−1∑
m=0

n[m](cos(2πmk/M)) ∗ (
1

M

M−1∑
p=0

n[p](cos(2πpk/M))]

=
1

M2
E[

M−1∑
m=0

n[m]n[p]δ(n− p)cos(2πmk/M) ∗ cos(2πpk/M)]

=
1

M2

M−1∑
m=0

E[n[m]2]cos2(2πmk/M)

=
1

M2
σ2(

M−1∑
m=0

cos2(2πmk/M))

=
1

M2
σ2(

M

2
+
cos((M + 1)2πk/M)sin(2πMk/M)

2sin(2πk/M)
)

=
1

M

σ2

2

The same derivation applies for the imaginary part. So the FFT is Gaussian
noise with mean zero and variance σ2.

4 Connection with Uncertainty Principle

Relationship between time length and frequency bandwidth
We consider a few examples
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1) We consider a function g(t) which is infinitely long in time domain

g(t) = cos(2πf0t)

Its Fourier transform is

F (f) =

∫
ei2πf0t + e−i2πf0t

2
ei2πftdt

=

∫
1

2
ei2πt(f0+f)dt+

∫
1

2
ei2πt(f−f0)dt

=
1

2
δ(f + f0) +

1

2
δ(f − f0)

The last line is based on
∫∞
−∞ ei2πft = δ(f).

Since the delta function has width zero, so the the bandwidth in frequency do-
main is zero. We see a signal which is infinitely long in time domain has zero
bandwidth in frequency domain.
2) We consider a function g(t) which has zero width in time, namely an impulse
function.

g(t) = δ(t)

Since this function is not a periodic function, we assume its period is infinity.
Its Fourier transform is

F (f) =

∫ ∞
−∞

δ(t)e−2πft = 1

Now we see a signal which has zero width in time has infinitely long frequency
bandwidth. Typically, for a signal, the width in its time domain and the width
in its frequency domain can not shrink to zero simultaneously. This leads to the
uncertainty principle.
Uncertainty Principle
In quantum mechanics, if there is a particle with position x and momentum p,
then uncertainty principle states

∆x∆p ≥ ~
2

Similar relationship holds for time t and Energy.

∆t∆E ≥ ~
2

We can modify this expression to get the time and frequency relationship in our
Fourier transform. Since E = ~ω. Then

∆t∆ω ≥ 1

2
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5 Connection to Bloch Theorem in Solid State
Physics

In solid state physics, the crystal lattice is periodic so as the periodic potential.
The wavefunction Ψ at the presence of a periodic potential has the following
property.

Ψ(r + Rn) = eik·RnΨ(r)

This is the Bloch Theorem. And the wavefunction Ψ(r) can be written as

Ψ(r) = eik·ru(r)

Where u(r) is periodic too with u(r) = u(r + Rn). In above, Rn is the crystal
translation vector, and k is a vector. For simplicity, we consider one dimension
crystal and the lattice basis vector is a, therefore Rn = na.
We note for a k vector which holds the Bloch theorem, k + l 2πa (where l is an
integer) can also holds the Bloch theorem. As in the discrete Fourier transform,
where F(k) is periodic function with period N and we confine the frequency
to be in the range of [−N/2T,N/2T ], the function Ψ(k) here is also a periodic
function with 2π

a . So to make k unique, we usually confine k to be within the
range− 2π

a ,
2π
a , and we call this the First Brillioun zone.

6 Connection to Characteristic Function in Statis-
tics

In statistics, given a probability density function f(x), we define the character-
istic function as

F(k) =

∫ ∞
−∞

eikxf(x)

The use of characteristic function comes from the reason as it always exists even
the probability density function does not. And a huge advantage to use charac-
teristic function duing calculations is it makes very simple to do differenciations
when the probability density functions are involved with differentiations.
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