
Author: Dr. Shi Guo Email: guoshi1984@hotmail.com

1 LU Decomposition

a. Motivation

When we solve a linear system equation Ax = b, imagine we are able to de-
compose A into L and U and A = LU , where L is a lower triangular matrix U
is an upper triangular matrix. Then equation Ax = b becomes LUx = b. Let
Ux = y, as both L and U are triangular matrix, we can solve for y in Ly = b
first, then solve for x in Ux = y second.
b. Formula

Decomposition form, LU = A












1 0 0 0 0
l21 1 0 0 0
l31 l32 1 0 0
l41 l42 l43 1 0
l51 l52 l53 l54 1

























u11 u12 u13 u14 u15

0 u22 u23 u24 u25

0 0 u33 u34 u35

0 0 0 u44 u45

0 0 0 0 u55













=













a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55













we run the calculation starting from the 1st column to the last column, and for
each column we update from the top row to the bottom row. For each element
aij , we write it as a product of l’s row and u’s column. We start from a11

a11 = u11 ⇒ u11

a21 = l21u11 ⇒ l21

a31 = l31u11 ⇒ l31

a41 = l41u11 ⇒ l41

a51 = l51u11 ⇒ l51

a12 = u12 ⇒ u12

a22 = l21u12 + u22 ⇒ u12

a32 = l31u12 + l32u22 ⇒ u22

We keep going in this way, we can get lij and uij one by one, and in the end we
get the whole L and U matrices. Now let us try to summarize this routine by a
few formula.
1) for i < j, which are the upper triangular part, namely U part(except diago-
nal), for example, for i=2, j=3, the matrix multiplication takes the 2nd row of
L and the 3rd column of U(in bold)












1 0 0 0 0
l21 1 0 0 0
. . 1 0 0
. . . 1 0
. . . . 1

























. . u13 . .
0 . u23 . .
0 0 . . .
0 0 0 . .
0 0 0 0 .













We get the following equation

l21u13 + u23 = a23

1

and we can calculate u23 as

u23 = a23 − l21u13

as l21 and u13 are known. Generally,

i−1
∑

k=1

likukj + uij = aij (1)

and

uij = aij −

i−1
∑

k=1

likukj

We use the above equation to calculate uij

2) for i = j, which are diagonal part, for example, for i=3, j=3, the matrix
multiplication form takes the 3rd row and 3rd column(in bold)












1 0 0 0 0
. 1 0 0 0
l31 l32 1 0 0
. . . 1 0
. . . . 1

























. . u13 . .
0 . u23 . .
0 0 u33 . .
0 0 0 . .
0 0 0 0 .













l31u13 + l32u23 + u33 = a33

and we can calculate u33 as

u33 = a33 − l31u13 − l32u23

as l31 and l32 are known. Generally

j−1
∑

k=1

ljkukj + ujj = ajj (2)

We use the above equation to calculate ujj

ujj = ajj −

j−1
∑

k=1

ljkukj (3)

3) for i > j, which are the lower triangular part, namely L part(except diag-
onal), for example, for i=3, j=2, the matrix multiplication form takes the 3rd
row and 2nd column












1 0 0 0 0
. 1 0 0 0
l31 l32 1 0 0
. . . 1 0
. . . . 1

























. u12 . . .
0 u22 . . .
0 0 . . .
0 0 0 . .
0 0 0 0 .













l31u12 + l32u22 = a32

2

we use the above the calculate lij

l32 = (a32 − l31u12)/u22

as l31, u12 and u22 are known. Generally,

j−1
∑

k=1

likukj + lijujj = aij (4)

lijujj = aij −

j−1
∑

k=1

likukj (5)

lij =
1

ujj

(aij −

j−1
∑

k=1

likukj) (6)

We use the above equation to calculate lij

c. Inplace Update

How can do in place update? In the update formula, each aij is used only once,
and then we get either lij or uij , so we can store the lij or uij in the exact same
place where aij is stored. This is in-place update. For example, for a certain
step i=4, j=3, our in-place updated matrix A looks like












u11 u12 u13 a14 a15
l21 u22 u23 a24 a25
l31 l32 u33 a34 a35
l41 l42 l43 a44 a45
l51 l52 a53 a54 a55













d. Partial Pivoting

For each lij , we need to divided by ujj , which is in the diagonal position, from
equation 3

ujj = ajj −

j−1
∑

k=1

ljkukj (7)

we never like dividing a really small number. So we check the rows below
ujj(the diagonal) with the following question: do we get a bigger diagonal ujj

if we exchange any of the following rows(the ith rows with i > j) with the jth
row, are we able to get a bigger ujj to use as a divider? We do this by subsitute
the row index j with i(i > j)

divider = aij −

j−1
∑

k=1

likukj

The right hand side of the above equation is the same as the right hand side of
equation 5. This means we can do this step without duplicating any calculation.
So for all rows with(i ≥ j) we calculate the dividers based on the above equa-
tion(this is equivalent of calculating Eq.3 and Eq.5), then choose the largest
divider. The next step is to interchange the jth row with the row that has the
largest divider, divide all the rest rows by the largest divider to get lij(This is
equivalent to Eq.6).

3

e. Scaled Partial Pivoting

Notice the fact that if we multiply the row of the matrix by a very large number,
the solution to the linear system equation does not change. So in order to com-
pare the divider’s value ujj , we can not compare the true value, we rather need
to compare the scaled value, which is the value divided by the largest element
in the row.

f. Implementation Details

When we use scaled partial pivoting, we basically change the order of rows. So
the decomposed matrix is not the original matrix A, rather than a row per-
mutation matrix of A. When we solve the equation Ax = b, since A has been
change after LU decomposition, we need b to be changed in the same way of
row permutation as A so that A and b are both consistent. This requires us
to keep track of the order of the rows of matrix A. We need store the new row
index into an array. We do not need to know which rows we exchange at every
step, and knowing the order is enough. One more thing we need to take care of
is regarding how to evaluate the determinant. When we interchange two rows
of the matrix, the determinant gets a minus sign. So we need to store whether
we exchange the rows even number of times or odd number of times, we call
this parity, which takes two values only, +1 and -1.

g. Java Implementation

The java code is on github repo
https://github.com/guoshi1984/guoshi1984.github.io/tree/master/quant_lib/src/math

4

https://github.com/guoshi1984/guoshi1984.github.io/tree/master/quant_lib/src/math

	LU Decomposition

