1 Linear Regression
1.1 Linear regression and Least Square Solution

Y=XB+¢

Where Y is a n x 1 matrix, X is a n X k matrix, beta is k x 1 vector and e is
nx1 vector with €; begin iid with normal distribution.

Assumptions

1. Linear

2. X matrix has full rank. In other words, no multicollinearity.

2. error term has zero mean Fle|X] =0

3. Homescedasticity or equal variance of €. In other words, no autocorrelation
between disturbances.cov(e;, €;) = 0.

6. Number of obsearvations n must be greater than the number of parameters.
Least Square Solution

The cost function is given by

FB) =Y = XB|* = (¥ =XB)"(Y = XB) =YY -Y'X3-p"XTY +TXTXp
Since third term are scalar,

BIXTYy = (BTXTY)T =vTXp

fB) =Yy —ovTXp - pTXTXp=YTY —2X"™Y)T3 + TXTXp

The first term is a constant and its derivative is zero.
The deriviative of 2nd term
Consider the derivative of a” 3 with respect to 3.

a’'B =X
0a’ B o
B

Write the derivative in matrix form

0a’ B
9p1 aq
0a’ B
92 =

0a’ B Qyp
083

So if we let @ = XTY | we have
U iy
The derivative of 3rd term
let A=XTX,
3i A1k Bk
BTXTXB = g7 SiAokfBr | _ 5,85 (S Ay Bi)

Yk ApkBr



To calculate the derivative of f(5), we note there are only 3 cases that the
derivative does not vanish

1)1=j=k
f(B)
2 =924
) ubi
2) 1=j,j # k
f(B)
L= A
a5, ke k1 Ak B
3) 1=k, j #k
f(B) .
8 S 1 AuB; = S5 1AL B
Therefore
@—A B+ St A Br + Aufi + % 1AL B
95, = AP k,k#£1ALEPE 1uP1 G d#1AL P

= X AwBr + ZjAlTjﬁj

The first term is the lth row of vector A5 = XT X, and the 2nd term is the
Ith row of vectorA” 3 = X7 X 3. So we put the whole derivative in matrix form

/B
B
which is a px1 vector with each row corresponding to the derivative with respect
to B; letting the derivative equal to zero yields the normal equation and the
estimation of 3
Normal equation

= 2XTy +2XTXxp

XT"x)p=xTy
Estimator of 3
f=xXTX)"'xTy

Least Square Estimator for Simple Linear Regression

y=pPo+ b1 X +e

(&)

=(XTx)"'XTy
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So

Ya?Yy; — N (Swiy;)
nXz? — (Xx;)?

Bo =

nXr;y; — Yy,
nXz? — (x;)?

pr =

(1 can also be written using the covariance

And it is easy to show
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which is the same as Eq.2. We can interpret 3 as ratio of the covariance of x

and y to the variance of x.

1.2 Projection matrix

Given 8 = (XTX)"1XTY, we have the predictor value of y = X3

7=XXTXx)"1xTy

The matrix P = X(X7X)"1X7T is a projection matrix. It projects the vector

of y into the column space of X.



Understand the word projection

Let us understand this first through geometry point of view. Consider a vector
on 2 dimensional space, Vi = (x1,%1)7, where z; and y; are the x and y com-
ponent, respectively. If we project the vector V into x-line, then apparently we
get V, = (21,0)7, see graph below.

y

If we have a vector that is along the x axis
1
()

The projection matrix of a vector into x line is

P, = a(zTx) 12T

1
= ( 0 > (1 0)
(10
L0 0
Applying this projection matrix to any 2 dimensional vector V gives (V;,0)T.
So it projects the vector into x line. Let us take another example. Imagine V3

is vector if we project V onto the line that has 45 degree angle with x axis. See
below.



(1,1

In order to calculate Vi, we see

V2y  V2a, V2 V2
r1 = rcos(n/4 — alpha) = 7‘(7; + 7;) = Ty + 730
b= et = 1
Viy = risin(n/4) = ac ;— y

After we understand this using geometry point of view, we can workout from
algebra point of view. The vector we want to project onto is

=(1)

The projection matrix of a vector into x line is

Therefore we easily see

1/1 1 T Lz +y)
Vi=s =( 3
2\ 1 1 Yy sz +y)
which is the same as what we get based on geometry. For n dimensional vector
y, if our X matrix has rank of k, then the projection matrix P projects the vector



y into k dimensional hyperplane. For example, if we define

1
) 1
IN =
1
The projection matrix P is
1 1 1
1 1 1 1
P=i—iT==
'NY TN
1 1 1

Projection matrix into null space
If P is a projection matrix, the matrix I — P is also a projection matrix. In
linear regression model

y=Xpf+e
P=X(XTx)"'xT

Define residual vector €

e=I-Py=>UT-XXTX)"1XT)y

And it is easy to show é and X are orthogonal.
XTe=XTT-Py=X"IT-X(XTX)"'XT)y=(XT - XTX(XTX)'XT)y =0y =0
For the above example, we define M = I — %iiT, and My express the mean
deviations of a vector.

Idempotent property of projection matrix

Consider the previous example that we project a vector V onto x axis, how

about we do this projection twice, we would end up the same vector V. Using

a little matrix algebra, it is easy to prove that for any project matrix P, we have
PP=P.

1.3 Partitioned Regression and Regression

y=XB+e=X 101+ Xofo+e¢

The normal equation is

X{ X1 XX, B\ _ [ Xly
X3X1 XIX, B )\ XJy
If X1 and X2 are orthogonal, namely, X7 X, = 0, then
Br = (XTX1) "' X{y
B2 = (X3 X2) ' XJy



If X1 and X2 are not orthogonal, we can solve for f5 in the above normal
equation set and get (o

Bo = [XT (I - X1 (XT X)X Xo) X (I - Xa (X7 X0) ' XT )y
= (X3 M1 Xy) M (X5 Myy)

Given the fact that M; is symmetrical and idempotent, we can rewrite the above
expression

B = (X3 My My Xo) (X3 My Myy)
= (X3 M{ M1 X2)"H(XJ M{ Myy)
= (M1 X2)" M1 X5) ™M (M1X2)" Myy) (4)

The above uses the property that M{ = M; and MM, = M,
The (5 is also the solution of

MY = M1 X582 + ¢

where My is the residual of y regressed on X; and M; X5 is the residual of X,
regressed on X;. For example, in simple linear regression

Y = B0+ b1

Where X; = 1y, so its projection matrix is i%iT, and the corresponding M
matrix is [ — %mT We tries to calculate 8 using partition regression.

1 _ 1 _
MY =(I-—=i)Y=Y-YMX=(UI-—iil)Y =X -X
N N
Then

N (g — ) s — 7
B = (MX)T(MX))"H(MX)T(MY)) = ZSN(I )_(i)z D)

which is the same as Eq.3

1.4 Variance componet identity

If we define our mean projection matrix P
P = iNiT
and silimarly we define mean deviation project matrix
M=I-P—iti
N
We have



Multiplying M matrix on the left, we have

My=MXB+Mé=MXB+eé

(My)? = (MXB+&)T(MXJ +¢)
= (BTXTMT + TV MXJ + €)
= (MXB)* + BT X "M e+ (BTXT"MTe)T + (&)

The 2nd and 3rd terms are zero because that 1)é has zero mean, so MTé =
Mé=¢and 2) XTe=0,so

(My)* = (MXP)* + (&)

Rewriting the above equation using summation, we have
N

Z(yz —-9)? = Z(Qz -9+ Z(yz -9)°

7 7 i
Define

SST = Z(Zli —7)?
SSR = Z(ﬂz‘ —9)?

SSE = Z(yi —9)?

Then we have

SST =SSR+ SSE

2

1.5 Variance of ,@ and 0° estimation

Var(B) = Var(XTX)7'XTe) = (XTX) ' XTVar(e)(XTX)71XTHT
= XTX) I XTX(XTX) ! =o?(XTX) ™!

The above derivation use the fact that ¢ has a normal distribution with mean 0
and variance 2. For simple linear regression

5 o? 211'12 —>x;
Var(B) = nYa? — (Zx;)? < =X on >

A Yalo?
Var(fo) = —=—5— (z0)?



Var(p:1) nya? — ()2
Try
. Y og)2
B~ ) = Ba? — 250+ 7) = a? — 28, D)+ T2
2 27, i 2 1
— vt = a2+ B0 w2 Ly
n n
So
5 Yalo?
Var(6y) = d

SSE = %(y — i)
= (Y - XB)T(Y - XB)
=Y -X(XTX)"'X"TYV) (Y - X(XTX) - 1XTY)
= (Y - pPY)I(Y — PY)
=Y'1-P)'a-PY=Y"T1-P)Y
=(XB+e)T(1-P)(XB+e)
=pTXT(1 - P)XB+ 28T XTXT(I — P)e + €' (I — H)e

E[SSE] = E[¢" (I — P)e] = E["¢]trace(I — H) = o*(n — k)

We obtain the unbiased estimator of o2

&Q_SSE
T n—k

Therefore the estimator of variance of 3
Var(B;) = 62(XTX);!

and the stanard error of j; is

SE(B;) = \/62(XTX);!

2 Properties of Least Square Estimators

When we have a estimator, we need to evaluate how good our estimator is? A
few questions we can ask is 1): how far is the value of our estimator away from



the true value, even in the ideal case when the sample size is inifinite? 2) when
1) is true, with finite sample size, does the value of our estimator approach to
the true value as the sample size increase? In other words, does the estimator
converge to the true value as sample size goes to inifinity? 3) when 1) and 2)
is true, as the sample size increase, how fast does our estimator converges to
true value? 4) with 1) 2) and 3), what is the asymptotic distribution of the
estimator? If the distribution is normal, it can be used to do interval estimation
such as confidence interval. The 1st question defines unbiasness, the 2nd one
defines consistency, and the 3rd one defines efficiency.

2.1 Unbiasness
Unbiased

f=(XTx)"'XTy
XTX) I XT(XB +¢)
XTX) " XTxp+ (XTX) ' XxTe

B4+ (XTX)1XxTe

= (
= (

Then the expectation of B condition on X is

EBIX] =B+ (X"X) ' XTE(e|X)
t

The last term is zero by assuption of linear regression. So
E[f] =5

The expectation of the estimator is the same as true value, this is called unbi-
ased.

Bias due to omission of relevant variables

Suppose we have a model

y=X151 + Xof2 +¢
If we regression y on X; only, our estimator is
Br= (X7 X)Xy = Br 4+ (XTX0) ' XT X + (X X0) ' X e

On the second term, we see unless 1) X; and X5 are orthogonal, or 2)3; =0, 31
is biased.

2.2 Consistency

The unbiasness gives us a metric of measuring how good our esitimator is,
from population perspetive. In reality, as our sample size is finite, we need
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ask ourselves does our estimator converges to true value when sample size is
sufficiently large. We know

B=pB+(XTX)'XTe

T T T
;L1 T1; X432 cee T T4k
XT'x =xN,
T T T
Lpilil T Tk2 - Tp;Tik
Ti1®i1  Ti1Li2 ... TilTik
_ N
=X
TikTil TikTk2 --- TikTik
Ti1
N
:Eizl ( i1 oo Tk )
Tik
N T
=3, XX

B=p+(XTX)"x"e
=B+ (BLXX) X e
XTe

1 _
= 5+ (S, L XIX) ()

2:1N

If X;s are iid, then by law of large numbers

1
Sie1— X! X;
n
converges to QQ in probability.
XTe

N
1 vwN
le Ti1€;

%E{V%‘ﬁi
— I Y
= NEl Ti3€;
1 N
NEl Tik€;
1

:NZZ?LXM =w

Where w is a k x 1 vector. To see the asymptotical behavior of w, we consider
its mean and asymptotical varance. The mean is

Elwi] = Ex[Ewi|z]] = Ex[XiEle|X;]] = 0
Var[w] = E[Var[w|X]] + Var[E[w|X]] = E[Var[w|X]] + 0 = E[Var[w|X])

1 1 o2XTX
Var[w|X] = Elow” | X] = EXTE[eeT]Xﬁ — % -

11



0.2 T
E[Varw|X]] = ;E(XnX

)

When XTTX converges to Q,
EVar[w|X]] =0

So @ converges to 0(k x 1) vector. Then when N is sufficiently large, 3 converges
to 8. This is the proof of consistency.

There are certain conditions in which the estimators become inconsitent.

1) X is not full rank, or X has multicollinearity 2) cov[X, €] # 0

2.3 Efficiency

The least equare estimator has the smallest varaince, and this can be proved by
Gauss-Markov theorem.

2.4 Multicollinearity

Suppose we have a regression model that contains two parameters
y = Bo+ X181 + X2B2

From above, we know variance of [ is

o2

VGT(B) = W

When X only contains 2 variables, X = (X7, X5)

) S 1 1
Var(p,) = o> = . =
( 1) 511822 — S%Q 511(1 - &) 511(1 - 7"%2)
- S11 1 1
Var(py) = o = 3 =
Sube =St Sp(1 - goz)  Sa(l—r)

Where

S11 = S(zy; — 81)2
Sag = 2(1'21' - 532)2
Sig = X(x1; — &1) (w2 — £2)
S12
T2 = —FF/——
V511522

r12 is the correlation coefficient. In extreme case, when X; and Xs are perfectly
correlated, the variance becomes infinite.
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3 Model Testing

Lagrange Multiplier(LM) test

Suppose we have two models, one is restriced, the other is unrestricted: Re-
stricted(R): y = X181 + ¢

Unrestricted (U): y = X181 + Xof2 + ¢

Given the unrestricted model, the likehood function is

L1, 2.0%) = Ggmorzenp(= o3y = Xaf = XaB)T(y = X081 = Xaf)

(2702

oL 1
Sy = B ?XZT(?J — X161 — X2f32)

When By = 0, define
M, =T X, (XTx)'xT
and M1 X; =0.
Sy = %XQT(:U - Xp) = %XzTMly = %XQTMl(X151 +e) = %XzTMﬁ
The last equal sign uses the fact M;X; = 0.

Var(X] Mye) = Var(X] Mye)

= XM Var(e)(XT My)T
= XJ My M X5 Var(e)
=’ XTI M X,
Define
V =XIM X,
Then

Var(X1 Mye) = 0%V
So X2T Mj e follows normal distribution with mean 0 and variance 02X2T M Xs.

Define

- X2TM16 . SQ
Vo XIM X, Vo2V

then Z follows standard normal distribution. The Lagrange Multiplier (LM)
test is defined

(X3 Mye)* 53

LM =27?= -
0'2X2TM1X2 02V

13



which follows x?2 distribution with degree of freedom 1.
F test
We define

SSEy = |ly — X161 — Xafa|?
SSER = |ly — X161

F test is defined as

FEzxtra expalined variation

= Degree of Freedom o SSER—SSEU
" Remaining unexplained variation SSEy
Degree of Freedom n—1

Let X = (X1, X3), and we define two projection matrices
Py=XXTx)'xT
Pr = Xy (X{Xy)7'XT

SSRp — SSRy =y Pry —y" Pry =y" (Pr— Pu)y
recall
Bo = (XT M X2) ' XTI My
The corresponding projection matrix is
My Xo(XT My X)) XT M,y

The SSRr - SSRy is the additional variance explained by Xs after removing
the linear space of X; on X5. This means the projection matrix corresponding
to Bs is Py - Pr. So we can get Py - Pr using the interpretation of projection
matrix instead solving for the projection matrix itself.

Py — Pp = M Xo(XT M X)) XTI M,y

The extra expained sum of squares by the unrestricted model is

SSRp — SSRy =y" (Pr = Pu)y = (X3 Miy)" (X3 M1 Xp) "' X3 My
with 1 degree of freedom as X9 only contains 1 parameter.
_ SSRr—SSRy _ (XaMyy)" (X5 Myiy)

SSRy  6Y(XTMiXo)

F =LM

We see that F test and LM test are equivalent.
Wald Test
Recall the estimator for fs in Eq.4,

By = (XT My X2) (X3 Myy)
Substitue

y=X181+X28: +¢

14



we get

B = (X3 MiX5) (X3 Mie)
Since € N(0,021I), we obtain

B2 ~ N(0,0%(X3 M1 X5)™")

Thus, scaling by 1/02, we arrive at
1
;XQTMle ~ N(0, XT M, X3)

Construct Wald test W
Wo— Aﬁ2 :
Var(Bz)

W follows t distribution. We now show W test is equivalent to LM test. Consider
W2

A ~ A 1 - A 1 1
2 T — T -1 T — Ty, —1 —
W2 =BT (Var(B) = 5BTVE= S (VTIS)TVVTIS, = S STVTIVY TS,

1
= 352V 15
=LM

4 Panel Data Model

We can view panel data as a "two dimensional” data set in which the sample
does not only come from different individuals, but also same individual across
different time point. We can write the regression model as

Yit = Qi + g Tt Bitk + Uit
k

where 1 <i < N,1<t<T,and1 < k < K. The equation has total sample size
of NT with total number of parameter NT (K +1), therefore it is not estimable.
So we will make the following few assumptions

| it = s | cvie = agy | Biv = Bis | Btk = Bier

Pooled yes yes yes yes
Fixed Effect yes no yes yes
Unrestricted yes no yes no

4.1 The unrestriced model

Vit = i+ Y TiakBik + Uit
k
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The above equation can be written in matrix form:

fori=1,
(€3]
Y11 1 zi11 z112 ... Tux Buy U1y
yiz | | 1 zi21 T122 ... T2k U712
= Biz | +
1
yir 1 =171 o172 .. TiTK ulr
Bikx
which we can also write as for ¢ = 2,
(%)
Yo1 1 xo11 212 ... Toik By U1
yo | | 1 ®m21 w22 ... Tk U2
= Baz +
1
Yor 1 zom xor2 ... ToTk ﬂzK UoT

So for each i, we can write
Y, =1ra; + Xifi + U;

where Y; = (yi1, Yi2, - ¥ir)?, 17 is a one vector of length T, X; is K x T matrix,
Bi = (Bi1, Bizs -, Bic)T, and U; = (wir, wso, ..., wir) T
If we consolidate equation set for all the value of i

Y1 1T 0 0 0 (6751 X1 0 0 0 ﬂl U1
ng . 0 1T 0 0 (65 0 X2 0 0 52 U2
171 o0 0o 12 .. 0 1Tl 0 0 x 0 N .
YN 0 0 0 1NT N 0 0 0 XN ﬂN UN

To solve for §;, we can use the strategy of partition regression. [3; is the solution
of the the regression

MY, = MX;8+U

where
1
M=1- TlTl;
MY; =yt — Ui
MX; =y — z;
the estimate of ( is
Bz - Ww_:E];Zny,Z
where
T
Wayi = > (it — i) (yie — ¥i.)
T
Waai = 3 (i — Ti.)(win — 2:.)"
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4.2 The pooled model

vit =+ > ik + it
k

The above equation can be written in matrix form:

fori =1,
Y11 1 zi11 z112 .. Tuk u11
Y12 1 zi21 7122 ... Tk U12
1
(@)
Y1T 1 =1 72 . TiTK 3, U
Yo1 | 1 zo1n  ®o12 ... ok 3, " U1
Y22 1 mo1  x222 ... Toog U2
1
Y21 2711 Zr2T2 ... T2TK U2
1
YNT 1 zn71 TNT2 . INTK UNT

Similarly, using the solution of 5 from Eq.5, the estimated 5 can be written as

1
M:I—Tlﬂg

B=W_ W,

where
N T
ny = Z Z(xzt - f..)(yit - g)
7 t
N T
me = ZZ(xzt - i')(xzt - j..)T
i t
4.3 The fixed effect model

Yit = Qi + Z Ttk Br + st
k

The above equation can be written in matrix form:
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Y11

Y12
yir 1T 0 0 0 a1
Y21 . 0 1T 0 0 (65
Yoo 0 0 lT 0
0 0 0 1NT QN
Yar
YNT
T111 T112 e T11K U1
T121 T122 ... T12K U2
TiT1  TiT2 - TITK B1 Ui
T211 €212 - T21K ﬁ2 U21
+ +
T221 €222 e T22K U22
Br
T2r1  X2T2 ... X2TK Uz
INT1 INT2 .-~ INTK uUNT

Similarly, using the solution of £ from Eq.5, the M matrix is
the estimated 8 can be written as

B = Wg;xl Wzy

where

N
Z it x’L yn - gz)
v
2

it xzt - l‘z )T

T
D (@
t

T
PC
t

i
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