
1 Linear Regression

1.1 Linear regression and Least Square Solution

Y = Xβ + ϵ

Where Y is a n × 1 matrix, X is a n × k matrix, beta is k × 1 vector and ϵ is
nx1 vector with ϵi begin iid with normal distribution.
Assumptions
1. Linear
2. X matrix has full rank. In other words, no multicollinearity.
2. error term has zero mean E[ϵ|X] = 0
3. Homescedasticity or equal variance of ϵ. In other words, no autocorrelation
between disturbances.cov(ϵi, ϵj) = 0.
6. Number of obsearvations n must be greater than the number of parameters.
Least Square Solution
The cost function is given by

f(β) = ||Y −Xβ||2 = (Y −Xβ)T (Y −Xβ) = Y TY − Y TXβ − βTXTY + βTXTXβ

Since third term are scalar,

βTXTY = (βTXTY )T = Y TXβ

f(β) = Y TY − 2Y TXβ − βTXTXβ = Y TY − 2(XTY )Tβ + βTXTXβ

The first term is a constant and its derivative is zero.
The deriviative of 2nd term
Consider the derivative of αTβ with respect to β.

αTβ = Σαiβi

∂αTβ

∂βi
= αi

Write the derivative in matrix form
∂αTβ
∂β1

∂αTβ
∂β2

...
∂αTβ
∂β3

 =


α1

α2

...
αp


So if we let α = XTY , we have

∂2(XTY )Tβ

∂β
= 2XTY

The derivative of 3rd term
let A = XTX,

βTXTXβ = βT


ΣiA1kβk

ΣiA2kβk

...
ΣkApkβk

 = Σjβj(ΣkAjkβk)
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To calculate the derivative of f(β), we note there are only 3 cases that the
derivative does not vanish
1) l = j = k

f(β)

∂βl
= 2Allβl

2) l=j, j ̸= k

f(β)

∂βl
= Σk,k ̸=lAlkβk

3) l=k, j ̸= k

f(β)

∂βl
= Σj,j ̸=lAjlβj = Σj,j ̸=lA

T
ljβj

Therefore

f(β)

∂βl
= Allβl +Σk,k ̸=lAlkβk +Allβl +Σj,j ̸=lA

T
ljβj

= ΣkAlkβk +ΣjA
T
ljβj

The first term is the lth row of vector Aβ = XTXβ, and the 2nd term is the
lth row of vectorATβ = XTXβ. So we put the whole derivative in matrix form

f(β)

∂β
= −2XTY + 2XTXβ

which is a px1 vector with each row corresponding to the derivative with respect
to βi letting the derivative equal to zero yields the normal equation and the
estimation of β
Normal equation

(XTX)β̂ = XTY

Estimator of β

β̂ = (XTX)−1XTY

Least Square Estimator for Simple Linear Regression

y = β0 + β1X + ϵ

(
β0

β1

)
=(XTX)−1XTY

=

(
1 1 ... 1
x1 x2 ... xn

) 1 x1

1 x2

1 xn

−1 (
1 1 ... 1
x1 x2 ... xn

)
y1
y2
...
yn


=

1

nΣx2
i − (Σxi)2

(
Σix

2
i −Σixi

−Σixi n

)(
Σiyi

−Σxiyi

)
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So

β0 =
Σx2

iΣyi − Σxi(Σxiyi)

nΣx2
i − (Σxi)2

(1)

β1 =
nΣxiyi − ΣxiΣyi
nΣx2

i − (Σxi)2
(2)

β1 can also be written using the covariance

β1 =

∑n
i (xi − x̄)(yi − ȳ)∑n
i (xi − x̄)(xi − x̄)

(3)

And it is easy to show

β2 =

∑n
i (xi − x̄)(yi − ȳ)∑n
i (xi − x̄)(xi − x̄)

=

∑n
i (xiyi − x̄yi − xiȳ + x̄ȳ)∑n

i (x
2
i − 2x̄xi + (x̄)2)

=

∑n
i xiyi −

∑n
i x̄yi −

∑n
i xiȳ +

∑n
i x̄ȳ∑n

i x
2
i −

∑n
i 2x̄xi +

∑n
i (x̄)

2

=

∑n
i xiyi − ( 1n

∑n
j xj)(

∑n
i yi)− (

∑n
i xi)(

1
n

∑n
j yj) +

∑n
i (

1
n

∑n
j xi)(

1
n

∑n
k yi)∑n

i x
2
i −

∑n
i 2(

1
n

∑n
j xj)xi +

∑n
i (

1
n

∑n
j xj)2

=

∑n
i xiyi − ( 1n

∑n
j xj)(

∑n
i yi)− (

∑n
i xi)(

1
n

∑n
j yj) + n( 1n

∑n
j xi)(

1
n

∑n
k yk)∑n

i x
2
i −

∑n
i 2(

1
n

∑n
j xj)xi + n( 1n

∑n
j xj)2

=

∑n
i xiyi − 1

n (
∑n

i xi)(
∑n

j yj)−
1
n (

∑n
i xi)(

∑n
j yj) +

1
n (

∑n
j xi)(

∑n
k yk)∑n

i x
2
i − 2

n (
∑n

j xj)(
∑n

i xi) +
1
n (

∑n
j xj)2

=

∑n
i xiyi − 1

n (
∑n

i xi)(
∑n

j yj)∑n
i x

2
i − 1

n (
∑n

j xj)(
∑n

i xi)

=
n
∑n

i xiyi − (
∑n

i xi)(
∑n

j yj)

n
∑n

i x
2
i − (

∑n
j xj)(

∑n
i xi)

=
n
∑

xiyi − (
∑

xi)(
∑n

j yj)

n
∑

x2
i − (

∑
xi)2

which is the same as Eq.2. We can interpret β as ratio of the covariance of x
and y to the variance of x.

1.2 Projection matrix

Given β̂ = (XTX)−1XTY , we have the predictor value of y = Xβ

ŷ = X(XTX)−1XT y

The matrix P = X(XTX)−1XT is a projection matrix. It projects the vector
of y into the column space of X.
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Understand the word projection
Let us understand this first through geometry point of view. Consider a vector
on 2 dimensional space, V1 = (x1, y1)

T , where x1 and y1 are the x and y com-
ponent, respectively. If we project the vector V into x-line, then apparently we
get Vx = (x1, 0)

T , see graph below.

If we have a vector that is along the x axis

X =

(
1
0

)

The projection matrix of a vector into x line is

Px = x(xTx)−1xT

=

(
1
0

)(
1 0

)
=

(
1 0
0 0

)
Applying this projection matrix to any 2 dimensional vector V gives (Vx, 0)

T .
So it projects the vector into x line. Let us take another example. Imagine V1

is vector if we project V onto the line that has 45 degree angle with x axis. See
below.

4



In order to calculate V1, we see

r1 = rcos(π/4− alpha) = r(

√
2

2

y

r
+

√
2

2

x

r
) =

√
2

2
y +

√
2

2
x

V1x = r1cos(π/4) =
x+ y

2

V1y = r1sin(π/4) =
x+ y

2

After we understand this using geometry point of view, we can workout from
algebra point of view. The vector we want to project onto is

i =

(
1
1

)

The projection matrix of a vector into x line is

Px = x(xTx)−1xT

=

(
1
1

)((
1 1

)( 1
1

))−1 (
1 1

)
=

1

2

(
1 1
1 1

)
Therefore we easily see

V1 =
1

2

(
1 1
1 1

)(
x
y

)
=

(
1
2 (x+ y)
1
2 (x+ y)

)
which is the same as what we get based on geometry. For n dimensional vector
y, if our X matrix has rank of k, then the projection matrix P projects the vector
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y into k dimensional hyperplane. For example, if we define

iN =


1
1
...
1


The projection matrix P is

P = i
1

N
iT =

1

N


1 1 ... 1
1 1 ... 1
... ... ... ...
1 1 ... 1


Projection matrix into null space
If P is a projection matrix, the matrix I − P is also a projection matrix. In
linear regression model

y = Xβ + ϵ

P = X(XTX)−1XT

Define residual vector ϵ̂

ϵ̂ = (I − P )y = (I −X(XTX)−1XT )y

And it is easy to show ê and X are orthogonal.

XT ϵ̂ = XT (I − P )y = XT (I −X(XTX)−1XT )y = (XT −XTX(XTX)−1XT )y = 0y = 0

For the above example, we define M = I − 1
N iiT , and My express the mean

deviations of a vector.
Idempotent property of projection matrix
Consider the previous example that we project a vector V onto x axis, how
about we do this projection twice, we would end up the same vector Vx. Using
a little matrix algebra, it is easy to prove that for any project matrix P, we have
PP = P .

1.3 Partitioned Regression and Regression

y = Xβ + ϵ = X1β1 +X2β2 + ϵ

The normal equation is(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)(
β̂1

β̂2

)
=

(
XT

1 y
XT

2 y

)
If X1 and X2 are orthogonal, namely, XT

1 X2 = 0, then

β̂1 = (XT
1 X1)

−1XT
1 y

β̂2 = (XT
2 X2)

−1XT
2 y
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If X1 and X2 are not orthogonal, we can solve for β2 in the above normal
equation set and get β2

β̂2 = [XT
2 (I −X1(X

T
1 X1)

−1XT
1 )X2]

−1[X2(I −X1(X
T
1 X1)

−1XT
1 )y]

= (XT
2 M1X2)

−1(XT
2 M1y)

Given the fact thatM1 is symmetrical and idempotent, we can rewrite the above
expression

β̂2 = (XT
2 M1M1X2)

−1(XT
2 M1M1y)

= (XT
2 M

T
1 M1X2)

−1(XT
2 M

T
1 M1y)

= ((M1X2)
TM1X2)

−1((M1X2)
TM1y) (4)

The above uses the property that MT
1 = M1 and M1M1 = M1

The β̂2 is also the solution of

M1Y = M1X2β2 + ϵ

where M1y is the residual of y regressed on X1 and M1X2 is the residual of X2

regressed on X1. For example, in simple linear regression

Y = β0 + xβ1

Where X1 = 1N , so its projection matrix is i 1
N iT , and the corresponding M

matrix is I − 1
N iiT . We tries to calculate β using partition regression.

MY = (I − 1

N
iiT )Y = Y − Ȳ MX = (I − 1

N
iiT )Y = X − X̄

Then

β1 = ((MX)T (MX))−1((MX)T (MY )) =

∑N
i (xi − x̄)(yi − ȳ)∑N

i (xi − x̄)2
(5)

which is the same as Eq.3

1.4 Variance componet identity

If we define our mean projection matrix P

P = i
1

N
iT

and silimarly we define mean deviation project matrix

M = I − P = i
1

N
iT

We have

y = ŷ + ϵ̂ = Xβ̂ + ϵ̂
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Multiplying M matrix on the left, we have

My = MXβ̂ +Mϵ̂ = MXβ̂ + ϵ̂

(My)2 = (MXβ̂ + ϵ̂)T (MXβ̂ + ϵ̂)

= (βTXTMT + ϵ̂T )(MXβ̂ + ϵ̂)

= (MXβ̂)2 + βTXTMT ϵ̂+ (βTXTMT ϵ̂)T + (ϵ̂)2

The 2nd and 3rd terms are zero because that 1)ϵ̂ has zero mean, so MT ϵ̂ =
Mϵ̂ = ϵ̂ and 2) XT ϵ̂ = 0, so

(My)2 = (MXβ̂)2 + (ϵ̂)2

Rewriting the above equation using summation, we have

∑
i

(yi − ȳ)2 =

N∑
i

(ȳi − ¯̂y)2 +
∑
i

(yi − ŷ)2

Define

SST =
∑
i

(yi − ȳ)2

SSR =
∑
i

(ȳi − ¯̂y)2

SSE =
∑
i

(yi − ŷ)2

Then we have

SST = SSR+ SSE

1.5 Variance of β̂ and σ2 estimation

V ar(β̂) = V ar((XTX)−1XT ϵ) = (XTX)−1XTV ar(ϵ)((XTX)−1XT )T

= σ2(XTX)−1XTX(XTX)−1 = σ2(XTX)−1

The above derivation use the fact that ϵ has a normal distribution with mean 0
and variance σ2. For simple linear regression

V ar(β̂) =
σ2

nΣx2
i − (Σxi)2

(
Σix

2
i −Σixi

−Σixi n

)

V ar(β̂0) =
Σx2

iσ
2

nΣx2
i − (Σxi)2
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V ar(β̂1) =
nσ2

nΣx2
i − (Σxi)2

Try

Σ(xi − x̄)2 = Σ(x2
i − 2x̄xi + x̄2) = Σi(x

2
i − 2(Σj

xj

n
)xi +

(Σjxj)
2

n2
)

= Σix
2
i −

2

n
(Σixi)

2 +
(Σixi)

2

n
= Σix

2
i −

1

n
(Σxi)

2

So

V ar(β̂0) =
Σx2

iσ
2

nΣ(xi − x̄)2

V ar(β̂1) =
nσ2

nΣ(xi − x̄)2
=

σ2

Σ(xi − x̄)2

SSE = Σi(y − ŷi)
2

= (Y −Xβ)T (Y −Xβ)

= (Y −X(XTX)−1XTY )T (Y −X(XTX)− 1XTY )

= (Y − PY )T (Y − PY )

= Y T (1− P )T (1− P )Y = Y T (1− P )Y

= (Xβ + ϵ)T (1− P )(Xβ + ϵ)

= βTXT (1− P )Xβ + 2βTXTXT (I − P )ϵ+ ϵT (I −H)ϵ

E[SSE] = E[ϵT (I − P )ϵ] = E[ϵT ϵ]trace(I −H) = σ2(n− k)

We obtain the unbiased estimator of σ2

σ̂2 =
SSE

n− k

Therefore the estimator of variance of β

V̂ ar(β̂i) = σ̂2(XTX)−1
ii

and the stanard error of βi is

SE(β̂i) =

√
σ̂2(XTX)−1

ii

2 Properties of Least Square Estimators

When we have a estimator, we need to evaluate how good our estimator is? A
few questions we can ask is 1): how far is the value of our estimator away from
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the true value, even in the ideal case when the sample size is inifinite? 2) when
1) is true, with finite sample size, does the value of our estimator approach to
the true value as the sample size increase? In other words, does the estimator
converge to the true value as sample size goes to inifinity? 3) when 1) and 2)
is true, as the sample size increase, how fast does our estimator converges to
true value? 4) with 1) 2) and 3), what is the asymptotic distribution of the
estimator? If the distribution is normal, it can be used to do interval estimation
such as confidence interval. The 1st question defines unbiasness, the 2nd one
defines consistency, and the 3rd one defines efficiency.

2.1 Unbiasness

Unbiased

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + ϵ)

= (XTX)−1XTXβ + (XTX)−1XT ϵ

= β + (XTX)−1XT ϵ

Then the expectation of β̂ condition on X is

E[β̂|X] = β + (XTX)−1XTE(ϵ|X)

t

The last term is zero by assuption of linear regression. So

E[β̂] = β

The expectation of the estimator is the same as true value, this is called unbi-
ased.
Bias due to omission of relevant variables
Suppose we have a model

y = X1β1 +X2β2 + ϵ

If we regression y on X1 only, our estimator is

β̂1 = (XT
1 X1)

−1XT
1 y = β1 + (XT

1 X1)
−1XT

1 X2β2 + (XT
1 X1)

−1XT
1 ϵ

On the second term, we see unless 1)X1 and X2 are orthogonal, or 2)β2 =0, β1

is biased.

2.2 Consistency

The unbiasness gives us a metric of measuring how good our esitimator is,
from population perspetive. In reality, as our sample size is finite, we need
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ask ourselves does our estimator converges to true value when sample size is
sufficiently large. We know

β̂ = β + (XTX)−1XT ϵ

XTX = ΣN
i=1

 xT
1ixi1 xT

1ixi2 ... xT
1ixik

... ... ...
xT
kixi1 xT

kixk2 ... xT
kixik


= ΣN

i=1

 xi1xi1 xi1xi2 ... xi1xik

... ... ...
xikxi1 xikxk2 ... xikxik


= ΣN

i=1

 xi1

...
xik

(
xi1 ... ...xik

)
= ΣN

i=1XiX
T
i

β̂ = β + (XTX)−1XT ϵ

= β + (ΣN
i=1XiX

T
i )

−1XT ϵ

= β + (ΣN
i=1

1

N
XT

i Xi)
−1(

XT ϵ

N
)

If Xis are iid, then by law of large numbers

Σi=1
1

n
XT

i Xi

converges to Q in probability.

XT ϵ

N

=


1
NΣN

1 xi1ϵi
1
NΣN

1 xi2ϵi
1
NΣN

1 xi3ϵi
...

1
NΣN

1 xikϵi


=

1

N
ΣN

i=1Xiϵi = w̄

Where w̄ is a k × 1 vector. To see the asymptotical behavior of w, we consider
its mean and asymptotical varance. The mean is

E[wi] = EX [E[wi|xi]] = EX [XiE[ϵ|Xi]] = 0

V ar[w̄] = E[V ar[w̄|X]] + V ar[E[w̄|X]] = E[V ar[w̄|X]] + 0 = E[V ar[w̄|X]]

V ar[w̄|X] = E[w̄w̄T |X] =
1

n
XTE[ϵϵT ]X

1

n
=

σ2

n

XTX

n
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E[V ar[w̄|X]] =
σ2

n
E(

XTX

n
)

When XTX
n converges to Q,

E[V ar[w̄|X]] = 0

So w̄ converges to 0(k×1) vector. Then when N is sufficiently large, β̂ converges
to β. This is the proof of consistency.
There are certain conditions in which the estimators become inconsitent.
1) X is not full rank, or X has multicollinearity 2) cov[X, ϵ] ̸= 0

2.3 Efficiency

The least equare estimator has the smallest varaince, and this can be proved by
Gauss-Markov theorem.

2.4 Multicollinearity

Suppose we have a regression model that contains two parameters

y = β0 +X1β1 +X2β2

From above, we know variance of β̂ is

V ar(β̂) =
σ2

(XTX)−1

When X only contains 2 variables, X = (X1, X2)

V ar(β̂1) = σ2 S22

S11S22 − S2
12

=
1

S11(1− S2
12

S11S22
)
=

1

S11(1− r212)

V ar(β̂2) = σ2 S11

S11S22 − S2
12

=
1

S22(1− S2
12

S11S22
)
=

1

S22(1− r212)

Where

S11 = Σ(x1i − x̂1)
2

S22 = Σ(x2i − x̂2)
2

S12 = Σ(x1i − x̂1)(x2i − x̂2)

r12 =
S12√
S11S22

r12 is the correlation coefficient. In extreme case, when X1 and X2 are perfectly
correlated, the variance becomes infinite.
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3 Model Testing

Lagrange Multiplier(LM) test
Suppose we have two models, one is restriced, the other is unrestricted: Re-
stricted(R): y = X1β1 + ϵ
Unrestricted (U): y = X1β1 +X2β2 + ϵ
Given the unrestricted model, the likehood function is

L(β1, β2, σ
2) =

1

(2πσ2)n/2
exp(− 1

2σ2
(y −X1β1 −X2β2)

T (y −X1β1 −X2β2))

S2 =
∂L

∂β2
=

1

σ2
XT

2 (y −X1β1 −X2β2)

When β2 = 0, define

M1 = I −X1(X
T
1 X1)

−1XT
1

and M1X1 = 0.

S2 =
1

σ2
XT

2 (y −Xβ̂1) =
1

σ2
XT

2 M1y =
1

σ2
XT

2 M1(X1β1 + ϵ) =
1

σ2
XT

2 M1ϵ

The last equal sign uses the fact M1X1 = 0.

V ar(XT
2 M1ϵ) = V ar(XT

2 M1ϵ)

= XT
2 M1V ar(ϵ)(XT

2 M1)
T

= XT
2 M1M

T
1 X2V ar(ϵ)

= σ2XT
2 M1X2

Define

V = XT
2 M1X2

Then

V ar(XT
2 M1ϵ) = σ2V

So XT
2 M1ϵ follows normal distribution with mean 0 and variance σ2XT

2 M1X2.
Define

Z =
XT

2 M1ϵ√
σ2XT

2 M1X2

=
S2√
σ2V

then Z follows standard normal distribution. The Lagrange Multiplier (LM)
test is defined

LM = Z2 =
(XT

2 M1ϵ)
2

σ2XT
2 M1X2

=
S2
2

σ2V
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which follows χ2 distribution with degree of freedom 1.
F test
We define

SSEU = ||y −X1β̂1 −X2β̂2||2

SSER = ||y −X1β̂1||2

F test is defined as

F =

Extra expalined variation
Degree of Freedom

Remaining unexplained variation
Degree of Freedom

=
SSER − SSEU

SSEU

n−1

Let X = (X1, X2), and we define two projection matrices

PU = X(XTX)−1XT

PR = X1(X
T
1 X1)

−1XT
1

SSRR − SSRU = yTPRy − yTPUy = yT (PR − PU )y

recall

β̂2 = (XT
2 M1X2)

−1XT
2 M1y

The corresponding projection matrix is

M1X2(X
T
2 M1X2)

−1XT
2 M1

The SSRR - SSRU is the additional variance explained by X2 after removing
the linear space of X1 on X2. This means the projection matrix corresponding
to β2 is PU - PR. So we can get PU - PR using the interpretation of projection
matrix instead solving for the projection matrix itself.

PU − PR = M1X2(X
T
2 M1X2)

−1XT
2 M1

The extra expained sum of squares by the unrestricted model is

SSRR − SSRU = yT (PR − PU )y = (XT
2 M1y)

T (XT
2 M1X2)

−1XT
2 M1y

with 1 degree of freedom as X2 only contains 1 parameter.

F =
SSRR − SSRU

SSRU

n−k

=
(X2M1y)

T (XT
2 M1y)

σ̂2(XT
2 M1X2)

= LM

We see that F test and LM test are equivalent.
Wald Test
Recall the estimator for β2 in Eq.4,

β̂2 = (XT
2 M1X2)

−1(XT
2 M1y)

Substitue

y = X1β1 +X2β2 + ϵ
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we get

β̂2 = (XT
2 M1X2)

−1(XT
2 M1ϵ)

Since ϵ N(0, σ2I), we obtain

β2 ∼ N(0, σ2(XT
2 M1X2)

−1)

Thus, scaling by 1/σ2, we arrive at

1

σ2
XT

2 M1ϵ ∼ N(0, XT
2 M1X2)

Construct Wald test W

W =
β̂2√

V̂ ar(β̂2)

W follows t distribution. We now showW test is equivalent to LM test. Consider
W 2

W 2 = β̂T (V ar(β̂))−1β̂ =
1

σ2
β̂TV β̂ =

1

σ2
(V −1S2)

TV V −1S2 =
1

σ2
ST
2 V

−1V V −1S2

=
1

σ2
ST
2 V

−1S2

= LM

4 Panel Data Model

We can view panel data as a ”two dimensional” data set in which the sample
does not only come from different individuals, but also same individual across
different time point. We can write the regression model as

yit = αit +
∑
k

xitkβitk + uit

where 1 < i < N , 1 < t < T , and 1 < k < K. The equation has total sample size
of NT with total number of parameter NT (K+1), therefore it is not estimable.
So we will make the following few assumptions

αit = αis αit = αjt βit = βis βitk = βjtk

Pooled yes yes yes yes
Fixed Effect yes no yes yes
Unrestricted yes no yes no

4.1 The unrestriced model

yit = αi +
∑
k

xitkβik + uit

15



The above equation can be written in matrix form:
for i = 1,

y11
y12
...
y1T

 =


1 x111 x112 ... x11K

1 x121 x122 ... x12K

1 ... ... ... ...
1 x1T1 x1T2 ... x1TK




α1

β11

β12

...
β1K

+


u11

u12

...
u1T


which we can also write as for i = 2,

y21
y22
...
y2T

 =


1 x211 x212 ... x21K

1 x221 x222 ... x22K

1 ... ... ... ...
1 x2T1 x2T2 ... x2TK




α2

β21

β22

...
β2K

+


u21

u22

...
u2T


So for each i, we can write

Yi = 1Tαi +Xiβi + Ui

where Yi = (yi1, yi2, ..., yiT )
T , 1T is a one vector of length T, Xi is K×T matrix,

βi = (βi1, βi2, ..., βiK)T , and Ui = (ui1, ui2, ..., uiT )
T .

If we consolidate equation set for all the value of i
Y1

Y2

...
YN

 =


1T 0 0 ... 0
0 1T 0 ... 0
0 0 1T ... 0
0 0 0 ... 1NT




α1

α2

...
αN

+


X1 0 0 ... 0
0 X2 0 ... 0
0 0 X3 ... 0
0 0 0 ... XN




β1

β2

...
βN

+


U1

U2

...
UN


To solve for βi, we can use the strategy of partition regression. βi is the solution
of the the regression

MYi = MXiβ + U

where

M = I − 1

T
1T 1

T
T

MYi = yit − ȳi.

MXi = xit − x̄i.

the estimate of β is

β̂i = W−1
xx,iWxy,i

where

Wxy,i =

T∑
i

(xit − x̄i.)(yit − ȳi.)

Wxx,i =

T∑
i

(xit − x̄i.)(xit − x̄i.)
T
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4.2 The pooled model

yit = α+
∑
k

xitkβk + uit

The above equation can be written in matrix form:
for i = 1,

y11
y12
...
y1T
y21
y22
...
y2T
...
yNT


=



1 x111 x112 ... x11K

1 x121 x122 ... x12K

1 ... ... ... ...
1 x1T1 x1T2 ... x1TK

1 x211 x212 ... x21K

1 x221 x222 ... x22K

1 ... ... ... ...
1 x2T1 x2T2 ... x2TK

1 ... ... ... ...
1 xNT1 xNT2 ... xNTK




α
β1

β2

...
βK

+



u11

u12

...
u1T

u21

u22

...
u2T

...
uNT


Similarly, using the solution of β from Eq.5, the estimated β can be written as

M = I − 1

T
1T 1

T
T

β̂ = W−1
xx Wxy

where

Wxy =

N∑
i

T∑
t

(xit − x̄..)(yit − ȳ..)

Wxx =

N∑
i

T∑
t

(xit − x̄..)(xit − x̄..)
T

4.3 The fixed effect model

yit = αi +
∑
k

xitkβk + uit

The above equation can be written in matrix form:
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

y11
y12
...
y1T
y21
y22
...
y2T
...
yNT


=


1T 0 0 ... 0
0 1T 0 ... 0
0 0 1T ... 0
0 0 0 ... 1NT




α1

α2

...
αN



+



x111 x112 ... x11K

x121 x122 ... x12K

... ... ... ...
x1T1 x1T2 ... x1TK

x211 x212 ... x21K

x221 x222 ... x22K

... ... ... ...
x2T1 x2T2 ... x2TK

... ... ... ...
xNT1 xNT2 ... xNTK




β1

β2

...
βK

+



u11

u12

...
u1T

u21

u22

...
u2T

...
uNT


Similarly, using the solution of β from Eq.5, the M matrix is

the estimated β can be written as

β̂ = W−1
xx Wxy

where

Wxy =

N∑
i

T∑
t

(xit − x̄i.)(yit − ȳi.)

Wxx =

N∑
i

T∑
t

(xit − x̄i.)(xit − x̄i.)
T
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