
1 Principle Component Analysis

a. Geometry Intuition
Imagine we have a two dimensional plane with axis x1 and x2 perpendicular to
each other. On this plane we have a data set(x1i, x2i), as shown in the graph
below. We notice most of the data lie along the line 45 degree angle between
the x1 and x2 axis. If we do a coordinate transformation by rotating the x1 and
x2 axis by 45 degree counterclockwise, we get new axis z1 and z2. Then we see
our data mainly lies along z1 axis. So if we eliminate coordinate z2, we are still
able to keep most information in the data. We reduce a two dimensional data
to one dimension. The z1 axis here is called the principal component.

The 45 degree rotation can be written as
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The above equation can be written in matrix form
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We call W1 = (
√
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√
2
2 )T , and W2 = (

√
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In general, we can write the transform with W
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(
z1 z2

)
=
(
x1 x2

)( w11 w21

w12 w22

)

Writing Z and X in row vectors instead of column vector looks a little weird.
The reason we do this is when we have multiple samples, we will increase num-
ber of rows to accommodate more samples.
Miltiple Sample representation and Algorithm Review
If there are n samples, the transformation can be written in matrix notation


z11 z12
z21 z22
... ...
zn1 zn2

 =


x11 x12
x21 x22
... ...
xm1 xm2

( w11 w21

w12 w22

)

In order to reduce to dimension, the goal is to find the transformation matrix
W so that (z11, z21, ...zn1)T have the maximum variance. The dimension which
has to maximum variance is the principle component. If we assume the data we
have is processed and have mean at 0. Then the variance of Z is

ZTZ =

(
WT

1

WT
2

)
(
x11 x21 ... xm1

x21 x22 ... xm2

)


x11 x12
x21 x22
... ...
xm1 xm2

( W1 W2

)
= WTXTXW.

Here we use some intuition to analyze the variance and leave the rigorous proof
in next. By intuition we imagine W1, W2 ... Wd be the eigenvectors of XTX,
namely

XTXWk = λkWk

Then

WT
k X

TXWk = λkW
T
k Wk = λk

Therefore, in order to maximize WT
k X

TXWk, Wk has to be the corresponding
eigenvector of the maximum eigenvalue λmax.

c. Rigorous Proof
Suppose we have a data set (X,y) where x is the feature variable. It is an mxn
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matrix where m is the data size, and n is the dimension of the features
x11 x12 ... x1n
x21 x22 ... x2n
... ... ... ...
xm1 xm2 ... xmn



We call the feature vector associated with the ith data x(i), we consider a
coordinate transformation:


z11 z12 ... z1n
z21 z22 ... z2n
... ... ... ...
zm1 zm2 ... zmn

 =


x11 x12 ... x1n
x21 x22 ... x2n
... ... ...
xm1 xm2 ... xmn




w11 w21 ... wn1

w12 w22 ... wn2

... ... ... ...
w1n w22 ... wnn



The goal is to reduce the dimension of the feature to d, still have a good repre-
sentation of the data. When Z has only d (d¡n) dimension, then


w11 w21 ... wd1

w12 w22 ... wd2

... ... ... ...
w1n w22 ... wdn



The problem is how to choose d dimensions out of n. We define the error
function as

m∑
i

||xi − zi||22 = ||X −WWTx||22This is a little involved

W = argmax||X −XWWT ||22 = argmaxtr(WTXTXW )

Let w1, w2,, wn be the column vectors of matrix W, then

tr(WTXTXW )

= wT
1 X

TXw1 + wT
2 X

TXw2 + + wT
dX

TXwd

=
∑

wT
i wii(λi is the ith eigenvalues of XTX)

If wi are the eigenvector corresponding to λi Then the maximum value of the
trace is achieved when we take w1 to wd as the eigenvectors associated with the
first d maximum eigenvalues.
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