
Author: Dr. Shi Guo Email: guoshi1984@hotmail.com

1 Gradient Based Optimization Method

1.1 Practical use of gradient descent: Dealing with large
samples

Batch gradient descent vs. stochastic gradient descent vs. mini batch
gradient descent
a. Definition
1) Batch gradient
Batch gradient means using all the data point to calculate the gradient.
cost =

∑N
i=1 -loglikelihood of ith sample

grad = ∂(cost)
∂w

update all parameter based on gradient

2) Stochastic gradient descent
The cost function used in batch gradient descent uses is the summation over all
the data points. In stochastic descent the cost function we use only contains
one data point, we use one data point to update parameters, iterate over all
data points.
For m = 1 : N

cost = - loglikelihood of the ith sample

grad = ∂(cost)
∂w

update all parameter based on gradient

3) Mini-Batch gradient descent
We divide N samples into G = N/k groups so that each group contains k data
points
For n = 1 : G

cost = C
∑nk

(n−1)k loglikelihood

grad = ∂(cost)
∂w

update all parameter based on gradient

b. Comparison
Time per it-
eration

Convergence
time for
large data

Sensitivity
to parame-
ters

Smoothness

Batch Gradi-
ent

Slow for
large data

Slower Moderate Smooth

Stochastic
Gradient

Always fast Faster High Very noisy

c. Practical usage
Shuffle the data before running the stochastic gradient descent

1

1.2 Adam Optimization

(1) Weighted avarage of gradient
A common pratice to avoid value fluctuations during the gradient descent update
is using a weighted average. For each step, we average the gradients in the
previous steps and do the update. If the cost function is f(w) and its gradient
is g(w) = ∇f(w), We define at step t

m(t) = βm(t−1) + (1− β)g(t)

wt = w(t−1) − αm(t)

Where beta is a hyperparameter. We usually choose 0.9 or 0.99. Using this
weighted average, the gradient we use for update at each step is

m(0) = 0

m(1) = βm(0) + (1− β)g(1) = (1− β)g(1)

m(2) = βm(1) + (1− β)g(2) = β(1− β)g(1) + (1− β)g(2)

m(3) = βm(2) + (1− β)g(3) = β2(1− β)g(1) + β(1− β)g(2) + (1− β)g(3)

We can write above as

m(t) = (1− β)

t∑
i=0

βt−ig(i)

(2) First step bias correction
The above weighted average causes a bias on the first step. Because the term
M (0) is not defined and we arbitrarily set to zero. This leads to a bias on the
first term, so we correct m(t) using m̃(t)

m̃(t) =
mt

1− βt
=

1

1− βt
(βm(t−1) + (1− β)gt)

m̃(0) = m0 = 0

m̃(1) =
m(1)

1− β
=

β

1− β
m(0) + g(1) = g(1)

m̃(2) =
m(2)

1− β2
=

β

1− β2
m(1) +

1− β

1− β2
g(2) =

1

1− β2
(β(1− β)g(1) + (1− β)g(2))

m̃(3) =
m(3)

1− β3
=

β

1− β3
m(2) +

(1− β)

1− β3
g(3) =

1

1− β3
(β2(1− β)g(1) + β(1− β)g(2) + (1− β)g(3))

m̃(t) =
1− β

1− βt

t∑
i=0

βt−ig(i)

2

From above, we see that m(1) = g(1), so gradient in the first iteration does not
have any bias. Also under this correction, for any t, the sum of coefficients of
g(i) is 1.

1− β

1− βt

t∑
i=0

βi =
1− β

1− βt

1− βt

1− β
= 1

(3) Learning rate scaling
So far we have a constant learning rate α. This means during one step of
update, the change of w is large when the gradient is large and the value of the
parameter would also fluctuate. To fix this, we modify the gradient by dividing
its magnitute. Similarly to m(t), we define

v(t) = βvv
(t−1) + (1− βv)g

2
t

ṽ(t) =
v(t)

1− βt
v

w(t) = w(t−1) − α
m̃(t)

√
ṽ(t) + ϵ

Where the ϵ is a small positive number in order to prevent dividing by zero. (4)
Summary

g(t) = ∇wf(w)

m(t) = βm(t−1) + (1− β)g(t)

v(t) = βvv
(t−1) + (1− βv)g

2
t

m̃(t) =
mt

1− βt
ṽ(t) =

v(t)

1− βt
v

w(t) = w(t−1) − α
m̃(t)

√
ṽ(t) + ϵ

1.3 Conjugate Gradient Method

a. The idea of A orthogonality
There exists tremendous materials online explaining conjugate gradient method.
However, after reading many versions of explanations, I am still confused that
why letting moving directions conjugate to each other eventually leads to a
solution. So I will be explaining the intuition first such that the idea of CON-
JUGATE comes more natural to understand.
1)The quadratic form and its gradient. Let us start with a quadratic
function

f(x) =
1

2
xTAx

Let

A =

(
2 0
0 1

)

3

and

x = (x1, x2)
T

Then

f(x1, x2) =
1

2

(
x1 x2

)(2 0
0 1

)(
x1

x2

)
=

1

2
(2x2

1 + x2
2)

The gradient of f(x) is

∇f(x1, x2) = (
∂

∂x1
f(x1, x2),

∂

∂x2
f(x1, x2))

= (2x1, x2)

=

(
2 0
0 1

)(
x1

x2

)
= Ax

2)Minimization using gradient descent. Suppose we arbitrarily choose a
starting point (x(0), y(0)) = (1, 1). Based on the principle of gradient descent,
we move point 0 to point 1 along the opposite direction of the gradient. Namely,
the direction we move should be

d = Ax = (−2x1,−x2)
T = (−2,−1)T

After finding the direction, we need to determine the step α that we need to
move, our next point is

(x
(1)
1 , x

(1)
2)T = (x

(0)
1 , x

(0)
2)T + αd(0)

= (x
(0)
1 , x

(0)
2)T + α(−2,−1)T

= (1− 2α, 1− α)

f(x
(1)
1 , x

(1)
2) = 2(1− 2α)2 + (1− α)2

= 9α2 − 10α+ 3

We choose α such that α minimizes f(x
(1)
1 , x

(1)
2) and we achieve this by setting

∂f
∂α = 0.

∂f

∂α
= 18α− 10 = 0

We get α = 5
9 , and the corresponding (x

(1)
1 , x

(1)
2) is

(x
(1)
1 , x

(1)
2) = (x

(0)
1 , x

(0)
2) + αd̂(0)

x
(1)
1 = 1 +

5

9
× (−2) = −1

9

x
(1)
2 = 1− 5

9
=

4

9

4

A-orthogonality Since we can easily know the minimum point of f(x1, x2)
is (0,0) without doing any calculation. We can calculate the error term which
gives us how far we are still off the minimum point. We define the error term
as

e(1) = (0, 0)− (x
(1)
1 , x

(1)
2) = (

1

9
,−4

9
).

Last, let us work on an interest fact by look at a matrix multiplication

d(0)Ae(1)

=
(
−2 −1

)(2 0
0 1

)(
1
9

− 4
9

)
= 0

Orthogonal!!! This means the error term and moving direction are A-orthogonal.
The fact of orthogonality holds if the f(x) has more than two variables. This
is a very interesting point. But why?
b. Proof of A-orthogonality
Now we suppose the f(x) = f(x1, x2, ..., xi, ..., xN) take a more general quadratic
form

f(x) =
1

2
xTAx− bTx+ c

=
1

2
(
∑
i

aiix
2
i + 2

∑
i,j,i<j

aijxixj)−
∑
i

bixi + c

Now taking the derivative,

∂f(x)

∂xk

=akkxk +
∑
j ̸=k

akjxj − bk

=
∑
j

akjxj − bk

The last line is the same as the first row result of matrix Ax -b. So
∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xN



=


∑

j a1jxj − b1∑
j a2jxj − b2

...∑
j aNjxj − bN


=Ax− b

5

We choose f(x(1)) such that

∂f(x(1))

∂α
= 0

So,

∂f(x(1))

∂α

=
∑
i

∂f(x
(1)
i)

∂x
(1)
i

∂x
(1)
i

∂α
= ∇f(x(1)) · d0 = (Ax(1) − b) · d0

While we know that

Ae(1) = A(x(min) − x(1)) = b−Ax(1)

This leads to

d(0)
T
Ae(1) = 0

So by choosing α that minimize f(x(1)), we automatically guarantee that the
moving direction is A-orthogonal to the error term. Proof completed.
c. Steps of convergence
In the example we did in the intuition, the f(x) only has two variables. And we
have proved that after moving one step, the error term is A-orthogonal to the
moving direction. So if we can enforce our next moving direction is A-orthogonal
to the current one, how many steps does the process converge? The answer is by
enforcing each moving directions are A-orthogonal to each other, the algorithm
can converge using exact n step, where n is the number of variables.
Proof:
We express the error term e(0) at step 0 as a linear combinations of n searching
directions

e(0) =

n−1∑
j=0

δjd
(j)

Where δj is a scalar. We find δj by multiplying d(k)
T
A on both sides

d(k)
T
Ae(0) =

n−1∑
j=0

δjd
(k)TAd(j)

d(k)
T
Ae(0) = δkd

(k)TAd(k)

6

δk =
d(k)

T
Ae(0)

d(k)
T
Ad(k)

=
d(k)

T
(Ae(k) +

∑k−1
i=0 αid

(i))

d(k)
T
Ad(k)

(d(k)
T
d(i) = 0)

=
d(k)

T
Ae(k)

d(k)
T
Ad(k)

If we let

αi = δi

So

e(k) = e(0) −
k−1∑
i=0

αid
(i)

=

n−1∑
i=0

δid
(i) −

k−1∑
i=0

αid
(i) =

n−1∑
j=k

δid
(i)

We see that when i = n, e(n) = 0. So we reach the convergence after exact n
steps.
d. algorithm
For minimizing

f(x) = xTAx− 2bTx

x(i) = x(i−1) + α(i−1)d(i−1)

r(i) = r(i−1) − α(i−1)Ad(i−1)

d(i) = r(i) + β(i−1)d(i−1)

at each step

α(i) =
r(i)

T
r(i)

d(i)
T
Ad(i)

βi =
r(i+1)T r(i+1)

r(i)
T
r(i)

2 Hession Based Method

2.1 Newton Method

a. Newton Method Principles
Based on Taylor’s expansion if we are at x0, we try to find δx so that x0 + δx

7

is closer to the stationary point.

f(x0 + δx) = f(x0) + f
′
(x0)δx+ f

′′
(x0)(δx)

2

take the derivative

df(x0 + δx)/dx = f
′
(x0) + f

′′
(x0)δx

therefore

δx = − f
′
(x0)

f ′′(x0)

X(t+1) = Xt − f
′
(x0)

f ′′(x0)

b. Matrix Forms

x(t+1) = xt −H−1(f(xt))∇f(xt)

where H is the Hessian matrix.

c. Connection with Gradient descent The newton method can be reduce
to gradient descent method by taking Hessian matrix as Identity matrix

d. Pros Since it utilizes the second order derivative, it converges much faster
than gradient descent.
For quadratic function, the equation from the Taylor expansion is exact, there-
fore the stationary point can be found using only one step.

e. Cons Need to evaluate the inverse of the Hessian Matrix, so it is computa-
tionally expensive.

2.2 Quasi Newton

Newton method requires the inverse of the Hessian matrix, which is usually not
easy to solve. So we need to find an approximation of the Hessian. Similar to
the way we solve for gradient, we can use finite difference method, in which the
gradient is

gradf(x) =
f(x+ δx)− f(x)

δx
,

This is only exact when δx approaches zero. For 2nd order derivative, we can
write

f
′
(x) =

f
′
(x+ δ)− f

′
(x)

δ

8

Again this is only exact when δ is zero. Based on this idea we replace the Hes-
sian Matrix with an approximation that satisfies the following approximation

∇f(x+ δx) = ∇f(x) +Bδx

This is quasi newton method. Various Quasi Newton methods exist with differ-
ent choice of B.

3 Levenburg Marquadt

This Method adds a scaled Identity matrix uI to the Hessian, for large u and
small Hessian, the method is equivalent to gradient descent with step size 1/u.

9

