
1 Linear Regression

1.1 Linear Regression Basic

a. Assumption
1) Weak exogeneity.
the predictor variables x can be treated as fixed values, rather than random
variables.
2) Linearity.
The mean of the response variable is a linear combination of the parameters
(regression coefficients) and the predictor variables.
3) Constant variance (a.k.a. homoscedasticity).
Different values of the response variable have the same variance in their errors,
regardless of the values of the predictor variables.
4) Independence of errors.
This assumes that the errors of the response variables are uncorrelated with
each other.
5) Lack of perfect multicollinearity in the predictors.
For standard least squares estimation methods, the design matrix X must have
full column rank p; otherwise, we have a condition known as perfect multi-
collinearity in the predictor variables

b. Matrix representation
Y = Hw + ε
where Y is N × 1, H is N ×D, w is D × 1, ε is N × 1.

c. Cost Function

L(w) =

N∑
i=1

(y − ŷ)2 =

N∑
i=1

(y −Hw)2 (1)

d. Analytical Solution

gradL(w) = −2XT (y −Hw) = 0 (2)

w = (HTH)−1HTy (3)

(4)

e. Analysis of Analytical Solution
1) To have (HTH)−1 invertible, the number of observations ¿ the number of
features.
2) Requires matrix inverse which is O(n3), too computationally intensive.
3) Thats why we need to seek for numerical solution, like gradient descent.

f. Gradient descent algorithm
Init w1 = 0
while ||∂L(ŵ)

∂ŵ ||2 > ε
For i= 1 to D(loop of features)

∂L(wj)
∂wj

= −2
∑N

i Hij(yi − ŷi(wt))
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wj+1
j = wj+1

j − η ∗ ∂L(wj)
∂wj

;
t= t+1;
In order to write the gradient in matrix notation, note

∂L(wj)

∂wj
= program@epstopdf

=− 2
(
H1j H2j H3j ... HNj

)


y1 − ŷ1(wt)
y2 − ŷ2(wt)
y3 − ŷ3(wt)

...
yN − ŷN (wt)




∂L(w1)
∂w1

∂L(w2)
∂w2

∂L(w3)
∂w3

...
∂L(w5)
∂w5

 = −2


H11 H21 H31 ... HN1

H22 H22 H32 ... HN2

H13 H23 H33 ... HN3

...
H1D H2D H3D ... HND




y1 − ŷ1(wt)
y2 − ŷ2(wt)
y3 − ŷ3(wt)

...
yN − ŷN (wt)


∂L(w)

∂w
= −2HT (y − ŷ(wt))

1.2 Performance Assessment/Model Selection

a. Training/validation/testing data split
1) Fit the model parameters using the training data
2) Select the model that minimize the error function on the validation data set
3) Use the error on the test set as a generalization assessment of the model

b. K fold Cross Validation
K fold cross validation applies in the situation where there is not so much data
available so we use different portion of the data as validation set and we evaluate
the model multiples times. The method has the following setups:
1) Shuffle the data
2) Divide the data into k set, called data[1] data[2]..data[k]
3) For(int i =0; i ≤k; i++)
{

use data[i] as validation set,
The rest data as training set,
Fit the model, get RSSi.

}
For example, we partition the data into 10 sets, called P1 to P10. First we use
P1 as validation, the rest as training. Second we use P2 as validation, the rest
as training. Third we use P3 as validation, the rest as training.
4) Average RSSAver(λ),
5) Repeat the same procedure 1-4 for models.
6) Pick the model that gives the least average RSSAver.
7) Use this model to train the entire data set.
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c. Understanding Bias and Variance Tradeoff
Define fŵ(x) as the fitted value average over all possible values of w, then
The mean square error

MSE(fŵ(train)(x))

= Etraining((fw(true)(x)− fŵ(x))2)

= Etraining(((fw(true)(x)− fw̄(x)) + (fw̄(x)− fŵ(x))2)

= E((f − f̄)2) + 2E((f − f̄)(f̄ − f̂)) + E(f̄ − f̂)2

E((f − f̄)2) = bias2(f)

E(f̄ − f̂)2 = var(f̂)

2E((f − f̄)(f̄ − f̂)) = 0

MSE(fŵ(train)(x)) = bias2f + var(f̂)

1) Conclusion
High bias leads to under fitting
High variance leads to over fitting

2) A plot which shows how training error and validation error changes as the
model goes more complex

http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote13.html

d. Debugging Learining Algorithm Tricks
1) Getting more training examples would be likely to fix high variance
2) Smaller sets of features would be likely to fix high variance
3) Getting additional feature would be likely to fix high bias
4) Decrease penalty parameter would be likely to fix high bias
5) Increase penalty parameter would be likely to fix high variance

1.3 Ridge and Lasso Regression

a. Definition
Ridge uses two norm as penalty and add it into the cost function, λ

∑
w2

i

Lasso uses one norm as penalty and add it into the cost function, λ
∑

(wi)
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b. Method
1) Ridge regression: Gradient descent

Y = Hw + ε

L(w) =

N∑
i=1

(y −Hw)2 + λ
∑

w2
i

Loss = −2HT (y −Hw) + 2λw

Step update: for j 6= 0:

w(t+1) = w(t) − η(−2HT (y −H ∗w)− 2λw)

if j =0, as we do not need to add penalty to the constant term:

w(t+1) = w(t) − η(−2HT (y −H ∗w))

2) Ridge regression: Analytical

w = (HTH + λ


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)−1XTY

3) Lasso regression: Coordinate descent

L(w) =

N∑
i=1

(y −Hw)2

L
′
(w) =

N∑
i=1

(y −Hw)2 + λ
∑

wi

∂L(w)

∂wj

=− 2

N∑
i=1

hij(yi −
D∑

j=1

wjHji)

=− 2

N∑
i=1

hij(yi −
∑
k 6=j

wkHki)

+2wj

N∑
i=1

h2
ij
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We let this equal to

−2ρj + 2wjzj

The gradient of the penalty term

λ
∂|wj |
∂wj

=− λ when wj < 0

[−λ, λ] when wj = 0

λ when wj > 0

∂L
′
(w)

∂wj

=− 2ρj + 2wjzj − λ when wj < 0

[−2ρj − λ,−2ρj + λ] when wj = 0

− 2ρj + 2wjzj + λ when wj > 0

So

wj =
ρj + λ/2

zj
if ρj < −λ/2

wj = 0 if − λ/2 < ρj < λ/2

wj =
ρj − λ/2

zj
ifρj > λ/2

3) Comparison
Ridge Lasso Comment

Model selection No Yes By drawing the contour
parameter in lasso shrinks to zero

Has analytical, and unique solution Yes No Derivative is not continuous in Lasso
Stable Yes No Ridge can deal better in colinearity

Plot of the contours of the original cost function(purple) and penalty term(blue)
for both ridge and lasso regression. The tangent point between purple and blue
curve is the solution.
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https://stats.stackexchange.com/questions/30456/geometric-interpretation-of-penalized-linear-regression

4) Usage We usually use Lasso to select parameters, then use ridge to find
the optimal solution.
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