
1 Clustering

1.1 K Means

a. Definition
Given a set of observations(x1, x2, , xn), where each observation is a dimensional
real vector, k-means clustering aims to partition the n observations into k(≤n
) sets S={S1, S2,, Sk} so as to minimize the within cluster sum of squares.
Formally, the objective is to find:
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b. Algorithm
1) Give the initial guess of k means m1,,mk

2) Assign each observation to the cluster whose mean has the least squared
Euclidean distance.
3) Calculate the new means to be the centroids of the observations in the new
clusters.
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c. Time Complexity
O(nkdi), where n is the number of d dimensional vectors, k is the number of
clusters and i is the number of iterations need till convergence.

2 Gaussian Mixture

a. Idea and Definition
1) In K means clustering, one sample point exclusively belongs to one cluster.
In other words, we assign a sample point to a cluster with probability 1. In Mix-
ture model, we assign sample point i to a cluster k with the probability rik, with

∑
k

rik = 1

The rik also follows the fact
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By changing the order of summation∑
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Define the weight of cluster: wk =
∑
i rik/N =

∑
k ωk ∗N = N

So ∑
k

wk = 1
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We can also interpret wk as a prior distribution of a sample point being assigned
to cluster k.
2) And for each cluster k, we define the probability of having a sample point i
at xi use a normal distribution N(xi|uk,Σk)
Diagram:
3) The rikπk and N(xi|uk,Σk) are connected with Bayesian rule

P (A|B) =
P (A)P (B|A)

P (B)

=
P (A)P (B|A)∑
c P (C)|P (B|C)

According this rule, we have the following

P (Xi = xi and Xi in cluster k)

=P (Xi in cluster k)P (Xi = xi given Xi in cluster k)

=P (Xi in cluster k|Xi = xi)P (Xi = xi)

So

P (Xi in cluster k|Xi = xi)

P (Xi in cluster k)P (Xi = xi given Xi in cluster k)/(Xi = xi)

Namely,

rik =
πkN(xi|uk,Σk)∑
j πjN(xi|uj ,Σj)

4) Our goal is the find uk, Σk, wk.

b. Cost function and Minimization
For a given point xi, the likelihood function is

p(xi) =
∑
k

πkN(xi|uk,Σk)

The likelihood function for the whole sample is

ΠN
i=1p(xi) = ΠN

i=1

∑
k

πkN(xi|uk,Σk)

The goal is to minimize the negative of Log Likelihood

L = −
N∑
i=1

ln(
∑
k

πkN(xi|uk,Σk))
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1)Take the derivative with respect to uk

dL/duk =
∑
i

πkN(xi|uk,Σk)∑
j πjN(xi|uj ,Σj)

Σ−1(xi − uk))

We found that the term

πkN(xi|uk,Σk)∑
j πjN(xi|uj ,Σj)

is exactly rik
Let the derivative equal to zero, we have

uk =
1

Nk

∑
i

rikxi(Nk =
∑
i

rik)

2) Taking the derivative with respect to Σk gives

Σk = 1/Nk
∑
i

rik(xi − uk)(xi − uk)T

3) Taking the derivative with respect to πk gives

πk =
Nk
N

We see uk, Σk, wk,rik are mutually dependent, therefore we need to solve this
iteratively.

c. Algorithm
1)Initialize cluster prior assignment πk = P (zi = k)
2)Given an observation xi from cluster k, calculate P (xi|z = k, uk,Σk) =
N(xi|uk,Σk)
3)E step
Given an observation xi, calculate rik

rik =
πkN(xi|uk,Σk)∑
j πjN(xi|uj ,Σj)

4)M step

Nk =

N∑
i

rik

ûk =

N∑
i

rik
Nk

xi

Σ̂k =

N∑
i

rik
Nk

(xi − ûk)(xi − ûk)T

πk =
Nk
N
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5)Repeat 3) and 4)

d. Connection to K means
In order to easily see how Gaussian mixture clustering relates to K means,
we need to introduce another latent variable Z and consider the log likelihood
function of the complete data set (X, Z). We discussed the probability to assign
a sample point to cluster k as πk, now we denote this assignment using an
indicator random variable Z(i) = Zk = (zk1, zk2, , zkK)T

Where

zkj = 1 when j = k

= 0 otherwise

In other words, only Zk is a K dimensional vector with only kth component
being 1, other components are zero. For example, Z1 = (1, 0, 0, 0..0)T , Zk =
(0, 0, 0, 1(kth element), , 0)T

And

p(Z(i) = Zk) = πk = Πjπ
zkj

j

We rewrite the likelihood function given X and Z

L = ΠN
i=1ΠK

k ΠK
j=1π

zkj

j N(xi|uj ,Σj)zkj

If we let πk = 1/K, and the covariance matrix = σ2I

LogL =
∑
i

∑
k

(logπk −
1

2

1

σ2
||xi − uk||2)

This reduces to the K means cost function
Now let σ goes to 0

rik =
πkN(xi|uk,Σk)∑
j πjN(xi|uj ,Σj)

=
πkexp(− (xi−µk)

2

2σ2 )∑
j πjexp(−

(xi−µj)2

2σ2 )

When σ goes to zero, the exponential term that decays the slowest survives,
and the term that decays the slowest is the one that minimize ||xi − uk||. Let
u* be the uk that minimize ||xi − uk||, then

rik =1 for k =k*

0 otherwise

This reduces to the k means where a sample point i is solely assigned to a cluster
k.

4


