
ABSTRACT

GUO, SHI. Quantum Monte Carlo Studies of Ultra-cold Molecules and Rashba
Interactions. (Under the direction of Lubos Mitas.)

Quantum Monte Carlo method(QMC) has proved to be powerful in predicting ma-

terial properties. We have applied QMC method to solve different electronic structure

problems including ultra-cold molecules, molecules with heavy elements and electron gas

with presence of spin-orbit interaction.

The ultracold molecules are of great interest to experiments. Two kinds of ultracold

molecules: LiSr and KRb, are studied in this thesis. Both binding energy curve and dipole

moment curve are calculated as a function of bond length. We use Hartree Fock(HF),

Configuration Interaction(CI) and the Quantum Monte Carlo methods and compare all

the results. We assess the many-body effects on the calculated quantities and the calcu-

lation shows the dipole moment is quite sensitive to the treatment of correlation.

The dissociation energy of Thorium halide molecules(ThCln and ThBrn) is studied us-

ing QMC and the behaviour of the molecules with different number of halides is analyzed.

We also compare our results with density functional theory calculations and experimen-

tal data. The comparison shows a reasonable agreement for ThCln case, however, ThBrn

case remains problematic.

Furthermore, we carry out a development of a new quantum Monte Carlo method

for calculations with Hamiltonians that contain spin-dependent operators. This is crucial

in particular for treatment of spin-orbit effects in systems with heavy atoms or effective

spin-orbit couplings such as the Rashba interaction. We introduce a continuous spin

representation and develop a new spin-sampling procedure in which the spin becomes a

dynamic variable instead of being restricted to a static label. Due to the presence of the

spin-orbit term in the Hamiltonian, the wavefunction becomes complex. For the purpose

of the treatment of complex wavefunctions, fixed-phase approximation is applied. The

energies of electron gas with Rashba interactions are calculated at different densities.

The result is very promising and comparable to other independent calculations in the

literature.
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Chapter 1

Introduction

Quantum mechanics have been successful in interpreting the properties of condensed mat-

ter systems at microscale. It describes the nature of fundamental particles in our daily

world: atoms, molecules, electrons, etc. The Schrödinger equation, proposed in 1925, pro-

vide us an exact mathematical formulation of non-relativistic quantum physics . With the

solution to the Schrödinger equation, we are able to know and predict many properties

of quantum systems. However, while physicists are often proud of being able to precisely

describe how a system behaves quantitatively, solving the equations underlying the the-

ory is a great challenge, especially when the size of the system becomes large. Thanks to

the tremendous development in computer technology, many calculations which used to

take immense time to perform, can be quickly done on modern computers. But there still

exist many unsolved problems because they suffer difficulties beyond the computational

efficiency. Theoretical physicists aim to exactly solve problems relying on the equations

from first principles and many people have been devoting their lives to developing various

kinds of methods. Quantum Monte Carlo, presented in this thesis, is one of the meth-

ods to simulate quantum systems. Generally, the term “Monte Carlo” refers to a class

of computer algorithms to compute the results based on random sampling. The word

“quantum” indicates we are using the Monte Carlo technique to solve problems of quan-

tum systems based on the knowledge of quantum mechanics. In this thesis, we will focus

on electronic structure problems, a particular area of the quantum system problems.

The greatest difficulty in the electronic structure problems is the treatment of elec-

tron correlation. Many well-developed methods can not take the correlation effect into

account without introducing approximations. Quantum Monte Carlo(QMC), however,

1



has the capability to incorporate the electron correlation directly by applying the many-

body wavefunction, which will be explained in Chapter 3. This leads to highly accurate

results. The milestone of the QMC calculation was the description of homogeneous elec-

tron gas in 1980[1], which provided an accurate local density approximations used in

density functional theory calculations. Over the past two decades, QMC have become an

excellent method to treat systems ranging from analytical models to real materials includ-

ing electron gas, atoms, molecules, and solids. Before we introduce the QMC method, in

this chapter, we start with some fundamental knowledge of quantum mechanics followed

by some traditional well-developed methods of solving electronic structure problems.

1.1 Many-body Schrödinger Equation

We consider the non-relativistic time-independent Schrödinger equation

HΦ(R, r) = EΦ(R, r) (1.1)

H is the Hamiltonian of the system, Φ(R, r) is the wavefunction with R being the po-

sitions of nuclei r being the positions of electrons and E is the energy eigenvalue. For a

system which contains electrons and nuclei, we can write the non-relativistic Hamiltonian

H as the following:

H = −
∑
i

h̄2

2mi

52
ri
−
∑
I

h̄2

2MI

52
RI
−
∑
i,I

1

4πε0

ZIe
2

|ri −RI |
+
∑
i<j

1

4πε0

e2

|ri − rj|

+
∑
I<J

1

4πε0

ZIZJe
2

|RI −RJ |
(1.2)

mi is the mass of the ith electron, and MI is the mass of the Ith nuclei. For convenience,

we write the equation using atomic units by setting e = 1, 4πε0 = 1, m = 1, h̄ = 1, then

the Hamiltonian becomes

H = −
∑
i

1

2
52
ri
−
∑
I

1

2MI

52
RI
−
∑
i,I

ZI
|ri −RI |

+
∑
i<j

1

|ri − rj|
+
∑
I<J

ZIZJ
|RI −RJ |

= Ti + TI + ViI + Vij + VIJ (1.3)
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The indices i and j refer to the electrons, and I and J refer to the nuclei. The first two

terms are the kinetic energy operator of all the electrons and nuclei, respectively. The

third term describes the attractive Coulomb interaction between the electrons and nuclei.

The fourth term describes the repulsive interaction between the electrons, and the last

term is the repulsive interaction between the nuclei. This is a quite complicated equation,

some approximation has to be made before any further treatment. In fact, consider the

mass of the nuclear is 1836 times larger than that of the electron, it is eligible to ignore the

motion of the nuclei. Therefore, the kinetic energies of the nuclei are assumed to be zero,

and the potential energy between the interactions of the nuclei can be added to the total

energy as a constant. This approximation is called the Born-Oppenheimer approximation.

Under this approximation, we can separate the whole Schrödinger equation into two parts:

the electron part and the nuclear part, and then solve each of them separately.

The electron part of the Schrödinger equation is

(Ti + Vij + ViI + VIJ)Φe,n(r,R) = Ee,n(R)Φe,n(r,R) (1.4)

where Φe,n(r,R) is the wavefunction of electron given the positions of all the nuclei fixed.

Ee,n(R) is the total eigenenergy of electrons which depends on the positions of nuclei: R.

This term is also called as Born-Oppenheimer potential energy surface(PBS). Since VIJ

are constant values, we usually add it to our total energy at the end of the calculation.

After we solve the electron part, the term Ee,n(R) enters the equation for the nuclei as

a constant potential energy. The part of the equation corresponding the nuclei with the

wavefunction Φ
′
n(R) can be written as

(TI + Ee,n)Φ
′

n(R) = EnΦ
′

n(R) (1.5)

The focus of the thesis is to solve the electron part of the Schrödinger equation under

Born-Oppenheimer approximation

(−1

2

∑
i

52
i −

∑
i,I

ZI
|ri −RI|

+
∑
i<j

1

|ri − rj|
+
∑
I<J

ZIZJ
|RI −RJ |

)Φe,n(r) = Ee,nΦe,n(r) (1.6)

where RI are fixed as discussed before. 5i means taking the derivatives with respect to

the coordinates of the ith electron.
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1.2 The Hartree-Fock Method

In this section we introduce an approach to solving many-body Schrödinger equation:

Hartree-Fock method[2, 3, 4]. We remember electrons are fermions. Therefore, the wave-

function must be antisymmetric. If we define a particle-exchange operator Pij, then for

a give N-particle state Ψ, we write:

PijΨ(r1, σ1, r2, σ2, ..., ri, σi, ..., rj, σj...rN , σN) = Ψ(r1, σ1, r2, σ2, ..., rj, σj..., ri, σi, ..., rN , σN)

(1.7)

For fermions, we must have

PijΨ = −Ψ (1.8)

The idea of the Hartree-Fock approximation is to build a variational many-body wave-

function that satisfies antisymmetry condition using independent one-electron states. So

this approximation can be viewed as independent-electron approximation. The variational

wavefunction Ψ is what is called Slater determinant and it is written as follows:

Ψ(r1, r2, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) ... ψ1(rN , σN)

ψ2(r1, σ1) ψ2(r2, σ2) ... ψ2(rN , σN)

. . .

. . .

. . .

ψN(r1, σ1) ψN(r2, σ2) ψN(rN , σN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.9)

Where ψi(rj) are the ith one-electron orbitals for the jth electron. All the one-electron

orbitals ψi need to be optimized to minimize the total energy and we will discuss how to

do it in the next step. Note that the Slater determinant is antisymmetric, which means,

when we exchange the ith and jth particle, we are exchanging the ith column and the

jth colomn of the Slater determinant, so the result is we get a minus sign as shown in

Eq. 1.8. Therefore the Pauli exclusion principle is well satisfied here. If the ith particle

and the jth particle happen to be in the same state, we have exactly the same two rows

in the determinant, so the wavefunction vanishes.

4



1.2.1 The Hatree-Fock Equation

We now derive the Hartree-Fock equation here. For convenience, we write our Hamilto-

nian for N electrons in the following way:

H =
N∑
i

h(i) +
∑
i,j;i<j

g(i, j) (1.10)

where h(i) is a one-electron operator, g(i, j) is a two-electron operator. It is easy to see

that from Eq. 1.6

h(i) = −1

2
52
i −
∑
I

ZI
|ri −RI |

(1.11)

g(i, j) =
1

|ri − rj|
(1.12)

Give the Slater determinant above as our wavefunction, we can calculate the expectation

value of h(i) and g(i,j )

< Ψ|
∑
i

h(i)|Ψ >=
N !

N !

∑
m

< ψm|h|ψm >=
∑
m

∫
drψ∗mh(r)ψm (1.13)

< Ψ|
∑
i,j

g(i, j)|Ψ >=
∑
m,n

< ψmψn|g|ψmψn > −
∑
m,n

< ψmψn|g|ψnψm > (1.14)

where

< ψmψn|g|ψmψn >=

∫
dr1dr2ψ

∗
m(r1)ψ∗n(r2)

1

|r1 − r2|
ψm(r1)ψn(r2) (1.15)

So the expectation value of the total energy is

E =
∑
m

< ψm|h|ψm > +
1

2

∑
mn

[< ψmψn|g|ψmψn > − < ψmψn|g|ψmψn >] (1.16)

The first term is total kinetic energy. We define operators J and K

Jm(r)ψ(r) =

∫
ψ∗m(r

′
)

1

|r1 − r2|
ψm(r

′
)ψ(r)dr (1.17)

Km(r)ψ(r) =

∫
ψ∗m(r

′
)

1

|r1 − r2|
ψ(r

′
)ψm(r)dr (1.18)
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F =
∑
m

hm +
∑
m

Jm −
∑
m

Km = h+ J −K (1.19)

with h =
∑
hm, J =

∑
Jm ,K =

∑
Km. And

E =
∑
m

< ψm|h+
1

2
(J −K)|ψm > (1.20)

We call the operator J the Coulomb operator and K the exchange operator. And F

is the Fock operator. The corresponding expectation values for J and K are called the

Hartree energy and the exchange energy. The Hartree energy is the classical Coulomb

energy while the exchange is purely quantum-mechanical with no classical counterpart.

The variational total energy E is a function of Ψ, with constraint that

< ψm|ψn >= δmn (1.21)

Based on Lagrange multiplier theorem, this problem can be solved by self-consistency

procedure(SCF). When the total energy reaches the minimum, the one-electron state

satisfies the Fock equation.

Fψk = εkψk (1.22)

εk is the eigenvalue of the Fock operator. For most of the problems in quantum chemistry,

we express our one-electron state as linear combination of basis sets, which we will explain

in the next section. The one-electron state can be written by

ψk(r) =
∑
s

Cskφs(r) (1.23)

The matrix form of the Fock equation(known as Roothaan equation) is

FCk = εkSCk (1.24)

Sij =< φi|φj > is the overlap matrix. Finding the correct ψk becomes finding the eigen-

value εk and eigenvector Ck of the Fock matrix: Fij =< φi|F |φj >=< φi|h|φj > +1
2
<

φi|J −K|φj >. The second term depends on the density matrix Pij = 2
∑

k CikC
∗
jk. So

to carry out the SCF calculation, we first need to guess the density matrix, then evalu-

ate Fock matrix, diagonalize and find the eigenvalue(ε) and eigenvector(Ck). Then the

new density matrix is constructed, we diagonalize the Fock matrix again. We repeat the
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procedure until we reach the convergence which means the result difference between the

two consecutive steps is smaller than threshold value.

1.2.2 Gaussian Basis Sets

In the calculation presented in this thesis, two forms of one-electron orbitals are used:

planewave for periodic systems and linear combinations of Gaussian basis sets for atomic

and molecular systems, where each molecular orbital is a linear combination of atomic

orbitals(LCAO) φn

ψ(r) =
∑
n

Cnφn(r) (1.25)

Each atomic orbital is represented by a linear combination of basis sets:

φn(r) =
∑
lm

Nlm(
∑
g

Rlmg(r))r
lYlm(r) (1.26)

where Nlm is the normalization factor, Ylm is spherical harmonic functions. So the whole

basis set consists of both radial part and angular part, and is a sum over all different

angular momentum channels. In each channel, the radial part of the basis is a linear

combination of several Gaussian functions: Rlmg(α, r)

Rlmg(r) = Clmgexp(−αlmg(r − r0)2) (1.27)

where r0 is the center of the nuclear, αlmg are constant numbers, which can be obtained

by optimization. In our calculations, we took the atomic basis from basis set exchange

website. Theoretically, both Slater-type functions and Gaussian-type function can be

used for radial part. The advantage of using Gaussian functions as our basis sets is when

we need to calculate the expectation value of any operator the integrals involved are quite

easy to evaluate. But the Gaussian functions do not have the correct asymptotic behavior

called cusp condition when r → 0. The cusp condition will be discussed elaborately in

the following Section 3.1.3. Usually, one may need many Gaussian functions in order to

correctly represent the asymptotic behavior of the radial part of the orbitals. Therefore,

there are many parameters and the calculation is quite time-consuming. To reduce the

computational cost, we use contracted basis set by taking the linear combination of
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several functions, for each angular momentum channel

Rlmg(r) = Clmg(
∑
h

Dlmghexp(−αlmghr2)) (1.28)

where the coefficients Dlmgh are frozen in the calculation, only Clmg is optimized in the

calculation. Making the coefficients frozen reduces the variational freedom, but for most

cases, it is enough to predict the chemical properties.

Up to here, we see Hartree Fock approximation nicely explains the Coulomb interac-

tion and the exchange interaction. However, Hartree Fock fails to describe the correlation

between the electrons with different spins. This will be addressed in the next few sections.

1.3 Post-Hartree-Fock methods

In many cases, calculations using Hartree-Fock approximation lead to unsatisfactory

results. This is because of the missing correlations in the Hartree Fock approximation.

For a given system, the difference between the exact total energy and the Hartree-Fock

total energy is called correlation energy. So the main goal of the post Hatree Fock methods

is to capture the correlation energy beyond the Hartree-Fock level. A basic fact is for a

given basis, all the orbitals in the Hartree-Fock solution form a complete orthogonal set.

We can write our variational wavefunction as a linear combination of many configuration

state functions(CSF) which satisfy the requirement of symmetry. And each CSF could

be one or several determinants built up by the Hartree-Fock orbitals. The form of the

wavefunction is

Ψ = Ψ0 +
∑
i

∑
p

cpiΨ
p
i +

∑
ij

∑
pq

cpqij Ψpq
ij +

∑
ijk

∑
pqr

cpqrijkΨpqr
ijk + ... (1.29)

The first term Ψ0 is the Slater determinant in Hartree-Fock solution. Ψp
i means a new CSF

by replacing the ith orbital in Ψ0 with the pth orbitals, which is unoccupied. This is single

excitation. Ψpq
ij is replacing both ith and jth obtials with pth and qth, which is double

excitation. We can build the expansion as large as possible to obtain the correlation

effect. A self-consistent-field procedure is carried out similar to what is described in

Hartree-Fock to minimize the total energy and determine all the weight(cpi ,c
pq
ij ,cpqrijk ) of

CSFs. The same minimization technique used in Hartree-Fock can be directly applied
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here. Using Lagrange multiplier method, minimizing the energy is equal to solving the

following equation:

HC = SCE (1.30)

H is the CI matrix, of which the elements are the Hamiltonian evaluated between the

two configuration state function. Hij =< Ψi|H|Ψj >, where Ψi andΨj are CSFs. C is the

vector containing all the coefficients in Eq. 1.29. S =< Ψi|Ψj > is the overlap matrix.

This method is called the configuration interaction(CI). We can go one step forward by

varying both coefficients of the CSFs and coefficients of each orbital to minimize the total

energy. This is the Multi-Configuration Self-Consistent-Field calculation. Theoretically,

the CI method can be exact, but in practice, the result of CI can be sensitive to several

factors. Here we want to highlight a few relevant ones. First, one needs to be careful to

choose excitation levels. Based on Brillouin’s theorem, we know

< Ψp
i |H|Ψ >= 0 (1.31)

This means single excitations do not contribute anything, so double excitation must be

added for the purpose of gaining the correlation energy. For single and double CI, the

computational cost scales as N6. It has been shown including triple and quadruple can

have a nontrivial effect on the total energy. For calculating those other quantities other

than energy, choice of excitation levels are crucial to obtain a reasonable result. We will

see this in Chapter 4 when we want to calculate the dipole moment of molecules. In some

cases, it is possible to include all the possible excitation states and this is called full CI

calculation. For large systems, full CI is almost formidable. We must truncate some of the

CSFs and keep only the most important ones. Unfortunately, such a truncated CI is not

size-consistent. The total energy does not scale linearly with the size of the system. For

example, consider the binding energy of a molecule(AB) made up of two small pieces: A

and B. Using doubly CI, one can take the difference between the total energy of AB(EAB)

and sum of total energy EA and EB to get the binding energy. Another way is take the

difference between EAB and total energy of molecule AB when the distance between A

and B are extremely large(We call it A....B) therefore the binding effect can be neglected.

These two approaches provide different results. This is because using CI double excitation

to treat two separate atoms A and B is not equivalent to A....B. In fact, treating A and

B using double excitation is equivalent of treating A....B by quadruple excitation.
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Second, the result is highly dependent on basis sets. Especially for the full CI calcula-

tion, the result is solely determined by the basis. Big basis sets are necessary to make the

calculation converge for a complex system. Up to know, highly accurate CI calculations

are only available in small systems.

Some limitations in CI methods can be overcome by using Coupled-Cluster method.

This methods is size-consistent, and is almost one of the most exact method for molecular

systems.

1.4 Density Functional Theory

The methods introduced in the previous section all focus on how to build the wavefunc-

tion. The limitations of these methods make them difficult to apply in extended systems

such as solids. Now we introduce another method: Density Functional Theory(DFT)[5, 6,

7]. The fundamental idea of DFT is any property of a physical system can be considered

as some functional of the electron density. And this is stated in the Hohenberg-Kohn

theorem as follows:

Theorem 1 The energy of a system are uniquely determined by the electron density

n0(r).

Theorem 2 The energy functional E[n0(r)] is defined and the electron density of the

ground state minimizes the energy functional.

Kohn and Sham developed the framework called Kohn-Sham approach, which formu-

lates the theory. This approach assumes that the interacting system can be replaced by

a non-interacting system by constructing an effective Hamiltonian. Therefore, solving

a many-body problem becomes solving a one-body problem with an effective external

potential. The real Hamiltonian is replaced by an effective Hamiltonian Heff containing

the external potential Veff satisfying

Heffψk(r) = [−1

2
52 +Vext]ψk(r) = Eψk(r) (1.32)

Suppose ψk(r) is the solution to this effective Hamiltonian, the one-electron orbital. And

the electron density is

n(r) =
N∑
k=1

fk|ψk(r)|2 (1.33)
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the sum here is over all the occupied orbitals. Since each orbital can hold up to two

electrons due to spin-degeneracy, fk is the occupation number, which can be 1 or 2.

Given the non-interacting system described by Eq. 1.32, the total kinetic energy is

Ts[n] =
N∑
i=1

< ψk(r)| − 1

2
52
i |ψk(r) > (1.34)

The classical Coulomb energy(Hartree energy) is

He =
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ (1.35)

The electron-nuclei interaction is

VeI =
∑
I

∫
ZIn(r)

|r−RI |
dr (1.36)

We define T [n] as the true kinetic energy of the system, Vee[n] as the true electron-electron

interaction The true total energy of interacting system is

E = T [n] + Vee[n] + VeI (1.37)

If we calculate the kinetic energy as a non-interacting system and Coulomb energy as a

Hartree energy, then the total energy becomes

Es = Ts[n] +He[n] + VeI (1.38)

The energy component we miss in Es is E − Es, which we call the exchange-correlation

energy Exc.

Exc = T [n]− Ts[n] + Vee[n]−He[n] (1.39)

So

E =
N∑
i=1

∫
ψ∗i (r)[−1

2
52
i ]ψi(r)dr +

1

2

∫
n(r)n(r′)

|r− r′|
drdr′ +

∑
I

∫
ZIn(r)

|r−RI |
dr + Exc[n(r)]

(1.40)
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Using Lagrange multiplier, variation of E subject to < ψk|ψl >= δkl yields

[−1

2
52 −

∑
I

ZI
|r−RI |

+

∫
d3r

′
n(r

′
)

1

|r− r′|
+ Vxc[n(r)](r)]ψk(r) = εkψk(r) (1.41)

Comparing Eq. 1.40 to Eq. 1.16, we have the same energy component as what we have

in Hartree-Fock, including kinetic, electron-nuclei interaction energy and Hartree energy.

The fourth term is new, and this describes the exchange and correlation energy together.

This is the essence of density function theory. For a given electron, the interaction effect

from other electrons is treated by an averaged external potential as a functional of the

density. Like the solutions to HF and CI, the DFT solution is also self-consistent. We

first choose the density n(r) by some initial guess, construct the exchange-correlation

potential using the density, solve Eq. 1.41 and calculate the density from the solution.

Then we construct the exchange-correlation potential again and solve the Schrödinger

equation iteratively until the change in the density in two consecutive loops is smaller

than the chosen threshold.

1.4.1 Local Density Approximation

The exact exchange-correlation energy is never known. After the DFT method came out,

various forms of the exchange-correlation functionals have been proposed and developed.

In local density approximation(LDA), the exchange-correlation energy is an integral of

the exchange-correlation density of homogeneous electron gas.

Exc =

∫
d3rεxc[n(r)]n(r) (1.42)

εxc[n] is the exchange-correlation energy per particle of an homogeneous electron gas,

thus it contains both exchange part(εx) and correlation part (εc). The exchange part

can be derived analytically using homogeneous electron gas model, yielding the following

form:

εx[n(r)] = Const. ∗ n
1
3 (r) (1.43)

The total energy of homogeneous electron gas is calculated with great accuracy by quan-

tum Monte Carlo methods, which we will discuss in the following chapters.

The correlation functional is developed by fitting to the data of quantum Monte Carlo
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results[8, 1]. Perdew and Wang proposed an expression[9]

εLDAc (rs, ξ) = εc(rs, 0) + ac(rs)
f(ξ)

f ′′(ξ)
(1− ξ4) + [ε(rs, 1)− ε(rs, 0)]f(ξ)ξ4 (1.44)

where

rs = [
3

4π
(n(r)−1)]

1
3 (1.45)

f(ξ) = [(1 + ξ)4/3 + (1− ξ)4/3 − 2]/(24/3 − 2) (1.46)

εc(rs, 0),εc(rs, 1),ac(rs) are determined by the empirical formula. ξ is spin-polarization.

G(rs, A, α1, β1, β2, β3, β4)

= −2A(1 + α1rs)ln[1 + 1

2A(β1r
1/2
s +β2rs+β3r

3/2
s +β4r2

s)
] (1.47)

Since many systems are spin-polarized, the spin-up and the spin-down electrons are

treated separately. Then, the exchange-correlation functional is a functional of spin-up

electron density and spin-down electron density. The method is local spin density approx-

imation(LSDA).

Exc[n
up(r), ndown(r)] =

∫
d3rn(r)εxc(n

up(r), ndown(r)) (1.48)

nup and ndown denote the spin-up and spin-down electron density.

1.4.2 Functionals Beyond LDA

LDA(LSDA) is very accurate for homogeneous systems, but does not work well for in-

homogeneous systems. In order to improve the performance of the functionals, people

introduced other type of functionals not only depending on the electron density, but also

the gradient of the density.

EGGA
xc [nup, ndown] =

∫
d3rn(r)εxc(n

up, ndown, | 5 nup|, | 5 ndown|) (1.49)

The functional is called Generalized-Gradient Approximations(GGA). The most widely

used forms of the functionals is PBE[10].

Another improvement is called hybrid functional. Comparing DFT to Hartree Fock,
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the exchange part in Hartree Fock is exact, but this effect is treated approximately in

LDA and GGA. The hybrid functional can take advantage of the exact exchange in

Hartree Fock and mix the HF exchange with exchange-correlation functional. The most

popular hybrid functional is B3LYP.

EB3LY P
xc = ELDA

xc + a0(EHF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c ) (1.50)

where a0 = 0.2,ax = 0.72, and ac = 0.81. EGGA
x is Becke 88[11], EGGA

c is correlation func-

tional of LEE, YANG and PARR [12]. ELDA
C is the VMN functional. Those parameters

are fitted to the experimental data. B3LYP functional is more often used for chemical

systems, such as atoms and molecule. For solid, B3LYP performs worse than GGA.

DFT is popular due to its low computational cost to offer a reasonable accuracy. We

now discuss some drawbacks of DFT. The hartree energy artificially add a self-interaction

part, this term is canceled by the exchange part in the Hartree-Fock, but it is not the

case in DFT. Some methods such as self-interaction correction and (LDA+U) are devel-

oped, but the problem has not been completely settled. The results of DFT calculations

are highly-dependent on the choice of functionals. Different functionals lead to differ-

ent results. Unlike Hartree-Fock and CI, which guarantee the energy is an upper bound

of the true energy, the DFT result can be either above or lower than the exact value.

Improvement can only be possible when there is experimental data available. Therefore

DFT results are hard to use for prediction.
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Chapter 2

Quantum Monte Carlo Method

The Quantum Monte Carlo(QMC) method discussed here differs from all the methods

mentioned in the previous chapter dramatically. This method is able to treat many-

body effect directly by applying many-body wavefunctions, instead of considering the

electron-electron interaction in a ”mean field”, which is an effective interaction created

by other electrons formulated by an effective Hamiltonian. The QMC method does not

introduce too many approximations in the Hamiltonian but keeps its original form as

much as possible. Since the many-body wavefunction used in QMC can explicitly describe

the electron correlation and the Hamiltonian is the real Hamiltonian with only some

reasonable approximations, QMC can make a big improvement having a much better

accuracy and acceptable computational cost. Like other methods, QMC suffers some

fundamental difficulties as well, especially for large and complex systems. Here we first

review the classical Monte Carlo method, and go through the necessary technique of

mathematics and statistics, then elaborate the major methods of QMC.

2.1 Classical Monte Carlo Method

Monte Carlo algorithm is a class of computer algorithm which computes the result by

repeated random sampling. One application of Monte Carlo method is solving integrals.

Consider a simple integral, which integrates a function f(x) from a to b

I =

∫ b

a

f(x)dx (2.1)
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There are many ways to solve this based on standard numerical methods. For example,

we may use rectangular rule, trapezoid rule, Simpson rule, etc. All of these methods

have something in common. We first choose equally spaced grid on x axis. Suppose the

number of grids is N , each grid has length b−a
N

. Then evaluate the integrand at each xi.

The integral is a sum

I =
b− a
N

N∑
i=1

wif(xi) (2.2)

where f(xi) is the value of integrand at xi, wi is some weight which differs by each

method. These methods attempt to use a fixed number of points xi to approximate all

the possible values xi over the range [a, b]. This approximation generates an error term

which depends on the size of the grid h = b−a
N

. The error term is usually proportional to

hk and N−k. k is an positive integer associated to each method. It may vary depending

on the method chosen.

Monte Carlo methods do this job in an alternative way. We don’t choose all the fixed

xis, instead, randomly generate N random variables that are uniformly distributed on

[a, b]. If N is sufficiently large, the integral is given by Eq. 2.2 with all wi are equal to 1.

I =
b− a
N

N∑
i=1

f(xi) (2.3)

This can be proved by the Law of Large numbers. That is, the average of all the f(xi)

converges to the expectation of f(xi) almost surely for sufficiently large N.

lim
N→∞

1

N

N∑
i=1

f(xi) = E(f(x)) =

∫ b

a

f(x)
1

b− a
dx =

1

b− a
I (2.4)

Then this equation can be rearranged to Eq. 2.3

The error term of Monte Carlo integration can be easily calculated by Central Limit

Theorem.The variance is proportional to 1/N , so the error term is N−1/2. Comparing this

to the error in the standard numerical ways, which is N−k, we see the numerical ways

would be more favorable since k is always greater than 1, making N−k smaller N−1/2.

The power of Monte Carlo integration manifests when one wants to evaluate an in-

tegral in higher dimensions. For a multidimensional integral, it is easy to prove that the

standard numerical integration gives the error term N−k/d. But for Monte Carlo integra-
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tion, the central limit theorem is valid in the same way regardless of the dimension, so

the error term remains the same as long as we keep the same number of samples. When

d > 2k, the error term in Monte Carlo integration becomes smaller, which makes Monte

Carlo integration more efficient in higher dimensions.

Most of the time we need to calculate the expectation of function composed of a

random variable. For example, we want to evaluate

I =

∫
f(x)p(x)dx (2.5)

This is the expectation of f(x) given the probability density function of x is p(x). Monte

Carlo integration is able to handle this. Here we don’t generate a uniformly distributed

random variables but rather a set of random variables xi distributed according to p(x).The

Monte Carlo integral becomes

I =
1

N

N∑
i=1

f(xi) (2.6)

The sample variance of f(xi) is a well-defined quantity

σ2
f =

1

N − 1

N∑
n=1

[f(xi)−
1

N

N∑
j=1

f(xj)]
2 (2.7)

The variance of the integral I when N is large is given by central limit theorem, which

is
σ2
f

N
, therefore the standard error is ±σf/

√
N .

2.2 Metropolis Algorithm

The Monte Carlo integration needs to generate random numbers of which the probability

density function is p(x). This is easy to do by an inverse transform if we already had

uniformly distributed random variables in hand generated by any random number gener-

ator. Suppose random numbers ui is uniformly distributed, then x = F−1(u) is a random

variable with cumulative density function F (x). But if F is a complicated multivariate

function, it is impossible to follow this approach because finding the inverse function may

not be trivial. The Metropolis algorithm[13] comes here as a very useful tool. The purpose

of the Metropolis algorithm is to generate a state of random sample point asymptotically

according to a given distribution P (x) using Markov Chain.
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The algorithm works in 3 three steps:

(1)Generate random sample points(walkers) Xn = {Xi : 1 ≤ i ≤ n}.
(2)For each sample point, make a trial move according to any convenient choice of distri-

bution function T (∆x = X
′
i−Xi). So T here can be considered as a transition probability

function from Xi to X
′
i , and we also write it as T (Xi → X

′
i). Usually we choose T as a

uniform distribution function or normal distribution function.

(3)For each move, calculate the acceptance probability.

A(Xi → X
′

i) = Min(1,
T (X

′
i → Xi)P (Xi

′)

T (Xi → X
′
i)P (Xi))

) (2.8)

P (x) is the desired distribution function. If the acceptance probability is 1, then we

accept the move. If not, we compare the ratio term
T (X

′
i→Xi)P (Xi

′)

T (Xi→X
′
i )P (Xi))

with another uniformly

distributed random variable from 0 to 1. If the ratio term is bigger, then we accept the

move otherwise reject it.

The path that each sample point takes is a random walk. It is easy to see this ran-

dom walk generated by Metropolis algorithm is a Markov Chain. In order to make the

Metropolis algorithm converge to the desired distribution, we have to prove the Markov

Chain is stationary. A nice property of Metropolis algorithm which can guarantee the

stationary Markov Chain is the detailed balanced condition. It means when the equi-

librium has reached, there would be no net flow of walkers. Suppose the density of the

walkers at position X and X
′

are P (X) and P (X
′
). The detailed balanced condition

states the probability of a walker going from X to X
′

must be equal to the probability

of the reverse way. Mathematically, we can write

P (X)T (X → X
′
)A(X → X

′
) = P (X

′
)T (X

′ → X)A(X
′ → X) (2.9)

Rearranging the equation gives

P (X)

P (X ′)
=
A(X

′ → X)T (X
′ → X)

A(X → X ′)T (X → X ′)
(2.10)

The detailed balanced condition is not necessary for the distribution to be stationary,

but one can rigorously show it is a sufficient condition. We now prove Eq. 2.10 is true

18



from the definition of the acceptance probability in Eq. 2.8. In Eq. 2.8,if

1 >
T (X

′ → X)P (X ′)

T (X → X ′)P (X)
(2.11)

then
A(X

′ → X)T (X
′ → X)

A(X → X ′)T (X → X ′)
=

T (X
′ → X)

T (X′→X)P (X′)

T (X→X′ )P (X)
T (X → X ′)

=
P (X)

P (X ′)
(2.12)

otherwise

1 <
T (X

′ → X)P (X ′)

T (X → X ′)P (X)
(2.13)

then

A(X
′ → X)T (X

′ → X)

A(X → X ′)T (X → X ′)
=

T (X→X′ )P (X)

T (X′→X)P (X′ )
T (X

′ → X)

T (X → X ′)
=
P (X)

P (X ′)
(2.14)

So the Eq. 2.10 holds for both cases. Therefore Metropolis algorithm satisfies the detailed

balance condition, which implies a stationary Markov chain.

2.3 Variational Monte Carlo

Variational Monte Carlo(VMC) is a method to evaluate the expectation value of a given

wavefunction based on the combination of variational theorem and Monte Carlo sampling.

Here we first show the variational theorem in quantum mechanics and then show how we

do the calculation of VMC.

Variational theorem is what the word “variational” in variational Monte Carlo means.

In VMC, the wavefunction we use is a trial wave function ΨT , which is the best available

wavefunction provided by some other methods (Hartree Fock, CI or DFT). We evaluate

the quantity

EV =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

(2.15)

If the true ground state is E0, then the variational theorem states

EV ≥ E0 (2.16)

We prove this by first expanding the trial wavefunction ΨT using the eigenstates of the
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Hamiltonian.

ΨT =
∑
k

〈Ψk|ΨT 〉Ψk (2.17)

Since Ψk is the eigenstate, so

HΨk = EkΨk (2.18)

EV =

∑
|〈Ψk|ΨT 〉|2Ek∑
|〈Ψk|ΨT 〉|2

≥
∑
|〈Ψk|ΨT 〉|2E0∑
|〈Ψk|ΨT 〉|2

= E0

We calculate EV in Eq.2.15 using Monte Carlo integral. We rewrite the variational

energy:

EV =

∫
|ΨT (R)|2[ΨT (R)−1HΨT (R)]dR∫

|ΨT (R)|2dR
(2.19)

Then define the local energy

Elocal = ΨT (R)−1HΨT (R) (2.20)

We can consider EV as the expectation of Elocal, and the corresponding probability density

function of Elocal is

p(R) =
|ΨT (R)|2∫
|ΨT (R)|2dR

(2.21)

The variational Monte Carlo algorithm is summarized as follows:

(1)Generate a set of walkers that are distributed according to |ΨT (R)|2 using Metropolis

algorithm.

(2)For each walker, evaluate the local energy based on Eq. 2.20.

(3)Average the local energies at all walkers to get the expectation value. If there are M

walkers totally, then the expectation value is

〈E〉 =
1

M

M∑
i=1

(Elocal)i (2.22)

The variational nature of this method gives us the upper bound of the ground-state

energy. For other operators other than the Hamiltonian, the expectation can be calculated
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using this method, but the result is not variational. This disadvantage of VMC is the

result is highly dependent on the choice of trial wavefunction. This obstacle is overcome

in the method introduced in the next section.

2.4 Diffusion Monte Carlo Method

2.4.1 Diffusion Equations and Green’s Functions

In the following sections, we will be introducing Diffusion Monte Carlo(DMC) method.

The model used in DMC is based on the diffusion process. We start with the diffusion

equation:
∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
= DL̂ρ(x, t) (2.23)

where ρ(x, t) is the density of the diffusing material as function of space and time. The

diffusion equation describes how the density evolves in time during this diffusion process.

D is the diffusion constant.

The solution can be found easily if we follow the routine of solving a partial differential

equation. But we try to solve the problem using Green’s function, then implement the

Green’s function using Monte Carlo algorithm. Given an initial distribution ρ(x, 0), we

can write down the solution using the Dirac notation

|ρ, t〉 = exp(DtL̂)|ρ, 0〉 (2.24)

then

〈x|ρ, t〉 = ρ(x, t) =

∫
dx
′〈x|exp(DtL̂)|x′〉〈x′ |ρ, 0〉 (2.25)

We define the Green’s function G

G(x
′
, x; t) = 〈x|exp(DtL̂)|x′〉 (2.26)

and ρ(x, t) can be written as:

ρ(x, t) =

∫
dx
′
G(x

′
, x; t)ρ(x

′
, 0) (2.27)
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From Eq.2.23 and 2.27, we can see

∂

∂t

∫
dx
′
G(x

′
, x; t)ρ(x, 0) = D

∂2

∂x2

∫
dx
′
G(x

′
, x; t)ρ(x, 0) (2.28)

Here we assume the differentiation operator and the integration operator are interchange-

able. This can be rigorously proved by Fubini’s theorem. We find out the Green’s function

G(x, x
′
; t) satisfies the same equation as stated in Eq.2.23.

∂G(x
′
, x; t)

∂t
= D

∂2G(x
′
, x; t)

∂x2
(2.29)

In order to have a unique solution, we need an initial condition. When t = 0

G(x
′
, x; 0) = δ(x− x′) (2.30)

To make the derivation easier, we write the Green’s function using the momentum oper-

ator p̂2 = − ∂2

∂x2 and change the position representation to the momentum representation:

G(x
′
, x; t) = 〈x′|exp(−Dt ∂

2

∂x2
)|x〉

=

∫
dp〈x′ |p〉exp(−Dt ∂

2

∂x2
)〈p|x〉

=

∫ ∞
−∞

dp
1√
2π
eipx

′

exp(−Dtp2)
1√
2π
e−ipx

=
1√

4πDt
exp[−(x− x′)2/4Dt] (2.31)

This gives us the explicit form of Green’s function. We can implement the diffusion

process using random walk based on the Green’s function. The state space is the position

of sample points(walkers). Then probability density of walkers as a function of its position

is

ρ(x, 0) =
∑
i

δ(x− xi) (2.32)
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Using this form, we write Eq. 2.27 as

ρ(x, t) =

∫
dx
′
G(x

′
, x; t)ρ(x

′
, 0)

=

∫
dx
′ 1√

4πDt
exp(−(x− x′)2/4Dt)

∑
i

δ(x
′ − x′i)

=
∑
i

1√
4πDt

exp(−(x− x′i)2/4Dt) (2.33)

(2.34)

So the new distribution is a sum of normal distribution centered at each x
′
i with vari-

ance
√

2Dt. By repeating this procedure we construct a Markov process with transition

probability given by the Green’s function. We use random walk to simulate this Markov

process in discrete time. The movement of the walkers in the state space is given by:

x(t+ ∆t) = x(t) + η
√

2D∆t (2.35)

where η is a Gaussian random variable.

The equation we use in DMC is rather more complicated than a simple diffusion

equation. When D = 1/2, consider the equation

∂ρ(x, t)

∂t
= (

1

2

∂2

∂x2
− V (x))ρ(x, t) (2.36)

Using the same method, we write the solution as

|ρ, t >= exp[−t(T + V )]|ρ, 0 > (2.37)

T is the kinetic operator T = p2

2
= −1/2(∂2/∂x2). And V (x) is the potential operator.

Since the operators T and V do not commute, a precise way to evaluate the Green’s

function is based on Campbell-Baker-Hausdorff(CBH) commutators. For a time interval

∆t

e−∆t(T+V ) = e−∆tT e−∆tV e−∆tCBH(T,V ) (2.38)

where CBH(T, V ) = 1
2
[T, V ] + 1

12
[T, [T, V ]] + .... If ∆t is small, we may introduce an
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approximation and ignore the CBH commutator, then

e−∆t(T+V )=e−∆tT e−∆tV

+ O(∆t)2 (2.39)

The Green’s function is the matrix element of the exponential operator in the position

representation. After we made this approximation, the Green’s function is written as

G(x
′
, x; ∆t) = 〈x|e−∆tT e−∆tV |x′〉 (2.40)

From what we did above, the Green’s function involved with kinetic operator is done by

setting the diffusion constant D = 1/2.

GT (x
′
, x; ∆t) =

1√
2π∆t

e−(x−x′ )2/(2∆t) (2.41)

Since the potential operator V commute with position operator. The Green’s function

involved with potential part is trivial. We can write down the full Green’s function under

the approximation given by Eq. 2.39 as

G(x
′
, x; ∆t) = GT (x

′
, x; t)e−∆tV (x

′
) + (∆t)2 (2.42)

But there is a serious problem here. The term involving V (x
′
) in the expression fails to

satisfy the normalization condition, which prevents us interpreting the Green’s function

as a transition probability and then construct Markov Chain. However, we can modify

Eq. 2.36 by adding another term ET :

∂ρ(x, t)

∂t
=

1

2

∂2

∂x2
− (V (x)− ET )ρ(x, t) (2.43)

ET here is chosen to keep the Green’s function normalized. We will discuss how to choose

ET in the next section. Furthermore, there exists a more precise approximation to deal

with the potential energy in the Green’s function. The expression is

e−∆t(T+V ) = e−∆tV̂ /2e−∆tT̂ e−∆tV̂ /2 + (∆t)3 (2.44)
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A more complex form of diffusion equation appearing in DMC is diffusion with drift:

∂ρ(x, t)

∂t
=

1

2

∂

∂x
[
∂

∂x
− F (x)]ρ(x, t) (2.45)

This is Fokker-Planck equation, F (x) is defined as

F (x) =
1

ρ(x)

dρ(x)

dx
(2.46)

Following the same way of deriving the Green’s function,we obtain the following expres-

sion:

G(x
′
, x; ∆t) =

1√
2π∆t

e−[x−x′−F (x)∆t/2]2/2∆t (2.47)

This Green’s function can be implemented using random walk similar to Eq. 2.35 but

adding a drift term:

x(t+ ∆t) = x(t) + ∆tF (x)/2 + η
√

∆t (2.48)

So far all that we discussed above is in one dimension. In three dimension, the Green’s

function for a simple diffusion process in Eq. 2.23 with D = 1/2 is

G3N(R
′
,R; ∆t) =

1

(2π∆t)3N/2
e−(R−R

′
)2/(2∆t) (2.49)

The Green’s function with a drift term is

G3N(R
′
,R; ∆t) =

1

(2π∆t)3N/2
e−(R−R

′−∆tF (R
′
)/2)2/(2∆t) (2.50)

2.4.2 Diffusion Monte Carlo Algorithm

The diffusion Monte Carlo can also be called as projection Monte Carlo. To understand

the meaning of projection, we consider again the simple diffusion equation plus a potential

term V (x), as we see in Eq. 2.36. We expand the operator of Green’s function with the

adjusted term ET in terms of the eigenstate of the Hamiltonian. We obtain

e−t(Ĥ−ET ) =
∑
n

|Φn〉e−t(En−Et)〈Φn| (2.51)
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En is the eigenenergy. It is straightforward to see for large t, the ground state energy EG

dominates in the sum EG−ET . Therefore we can interpret the Green’s function operator

as a projection operator on the ground state. We discussed how to implement the Green’s

function associated with the kinetic operator using a random walk. Now we need to treat

the potential part. The potential part of the Green’s function is exp[−∆t(V (R
′
)− ET )]

or exp[−∆t(V (R)+V (R
′
)−2ET )/2]. We can interpret this as a weight w being assigned

to each walker, thus we introduce a process called branching process. The branching

process states if w < 1, then the walker survives with probability w. If w ≥ 1, the

walker continue to evolve in space, and a new walker is created at the same position

with probability w − 1. In the previous section, we introduced ET in order to keep the

normalization of the Green’s function and construct the Markov chain. We now need to

find a way to calculate ET . We understand the fact that keeping the normalization of

the Green’s function means to keep the total probability density conserved. When we

use a set of walkers to represent this process, it is equivalent to having the total number

of walkers conserved, preventing a fast growing or decreasing population. Suppose the

target number is M , and at a certain step the total number is M
′
. If we multiply a factor

M/M
′

in the Green’s function, then the normalization is satisfied. We can achieve this

by changing the ET by ln(M/M
′
). So we update ET based on

Enew
T = Eold

T + Cln(M/M
′
) (2.52)

C can be chosen to control how fast the number of walkers approach the target number.

2.4.3 Guiding Function and Importance Sampling

When we directly apply the diffusion Monte Carlo algorithm to solve Eq. 2.36, we might

encounter some problems. First, the approximation used in Eq. 2.39 requires a very small

timestep to be taken. This can be very inefficient. Second, all the walkers are free to diffuse

around. If our potential has singularities and the walker is in the close proximity of the

singular point, the branching process will generate too many copies of the walker. This

causes a biased sample of the distribution function and leads to a very slow convergence

and large statistical errors. To overcome this, we choose a better sample distribution
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function as our guiding function

f(R, t) = Φ(R, t)ΨT (R) (2.53)

Where ΨT (R) is some trial function which is the best guess of the true wavefunction we

can find. From Eq. 2.36, it is easy to see that f(R, t) satisfies a Fokker-Planck type of

equation

∂f(R, t)

∂t
=

1

2
52

R f(R, t)−5 · [vD(R)f(R, t)]− [EL(R)− ET ]f(R, t) (2.54)

Here vD(R) is the drift velocity defined as

vD(R) = 5ln|ΨT (R)| = ΨT (R)−15ΨT (R) (2.55)

And EL(R) is

EL(R) =
HΨT (R)

ΨT (R)
(2.56)

Using the trial function, the DMC algorithm becomes a combination of diffusion with

drift and DMC with a potential term, which is implemented using branching process.

The Green’s function is written as a multiplication of two parts:

G(R
′
,R; t) ≈ Gd(R

′
,R; t)Gb(R

′
,R; t) (2.57)

The diffusion part Gd(R
′
,R; t) is

Gd(R
′
,R; t) = (2πt)−3N/2exp[−(R−R

′ − tvD(R
′
))2

2t
] (2.58)

The branching part Gb is

Gb(R
′
,R; t) = exp{−t[EL(R) + EL(R

′
)− 2ET ]/2} (2.59)

The method above is called importance sampling. We notice the Green’s function change

in both diffusion part and branching part. The improvements we make are:

(1)In the diffusion part, the drift term we add can push the walkers going to the favorable

region where the probability density is higher therefore we can sample that region more
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often.

(2)In the branching part, the weights of walkers depends on the local energy instead

of the potential energy only. Usually the local energy is a smoother function than the

potential function so we avoid encountering singularities.

The last point we want to address here is the modification in the Green’s function. In

order to have better accuracy, smaller time steps are usually used to reduce the errors,

but can lead to low efficiency. So we introduce a remedy which is the acceptance-rejection

procedure in order to guarantee the detailed balance condition. The probability of accep-

tance is

P (R
′ → R) = min[1,

Gd(R→ R
′
, t)Ψ2

T (R)

Gd(R
′ → R, t)Ψ2

T (R′)
] (2.60)

2.4.4 Expectation Values in DMC

In DMC, we calculate the expectation value of the energy by averaging the local energy

at all sample points:

< EDMC >=
1

N

N∑
i=1

EL(Ri). (2.61)

By using importance sampling, we can write < EDMC > as

< EDMC > =

∫
dRf(R)EL(R)∫

dRf(R)
(2.62)

=

∫
dRΦ(R)HΨT (R)∫
dRΦ(R)ΨT (R)

(2.63)

= E0. (2.64)

It is clear to see the expectation value of ground state energy in DMC is equal to the

true ground state energy.

2.4.5 Fixed-Node Approximation

We mentioned in the last section that f(R, t) = Φ(R, t)ΨT (R) represents the distribution

function of the sample, so it is meaningful only when it take positive values. For bosons,

the wavefunction of the ground state is guaranteed positive everywhere, however, this

is not the case for fermions. The approximation used in the calculation to address this
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problem is fixed-node approximation. And this is not the only available one, but it is the

simplest one and used throughout the calculations presented in this thesis. In fixed-node

approximation, we enforce Φ(R, t) to have the same sign as ΨT (R) everywhere. Therefore,

every time the walker moves, we check if the sign of ΨT (R) changes or not. We only

accept the move which does not change the sign of ΨT (R). In fact, adding this constraint

is equivalent to changing the real Hamiltonian to the effective Hamiltonian. Consider the

region where ΨT > 0, the effective Hamiltonian under fixed-node approximation(HFN)

can be written as follow:

HFN = H + V∞ (2.65)

where V∞(R) = 0 if ΨT (R) > 0 and V∞ =∞ if ΨT ≤ 0.

If ΨT < 0, then

HFN = H + V∞ (2.66)

where V∞(R) = 0 if ΨT (R) < 0 and V∞ =∞ if ΨT ≥ 0.

The infinite potential is added to prohibit any walker from crossing the regions where the

wavefunction changes the sign. It can be rigorously proved that the expectation value of

the energy under the fixed-node Hamiltonian (HFN) is a strictly upper bound of the one

in the true Hamiltonian. The detailed proof can be found in the Appendix of Reference

[14].

2.4.6 Fixed-Phase Approximation

The fixed-node approximation is good enough if the trial wavefunction used is real.

This is usually the case in the calculation for atomic and molecular systems. As long

as the Hamiltonian of the systems has time-reversal symmetry, one can always use real

wavefunction. However, many of the interesting properties of condensed matter physics

involves breaking of time-reversal symmetry. Fox example, if the Hamiltonian contains

magnetic field, it would be necessary to employ complex wavefunctions. An equivalent

approach to tackle the fermion sign problem when the wavefunction is complex is the

fixed-phase approximation.

We first write our complex trial wavefunction as |ΨT (R)|exp(iφT (R)), where |ΨT (R)|
is the modulus of the trial wavefunction, φT (R) is the phase of the wavefunction. We take

the simplest Hamiltonian which contains only the kinetic energy operator and potential
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operator and apply it to the wavefunction.

[
∑
i

−1

2
52
i +
∑
i<j

1

|ri − rj|
]|ΨT (R)|exp(iφT (R)) = E|ΨT (R)|exp(iφT (R)) (2.67)

where i denotes the ith electron. Using a little math, we can reorganize the equation

above, and split into the following two equations, one being the real part, the other being

the imaginary part.

[
∑
i

1

2
52
i +
∑
i<j

1

|ri − rj|
+

1

2

∑
i

(5iφT (R))2]|ΨT (R)| = E|ΨT (R)| (2.68)∑
i

5i · [|ΨT (R)|25i φT (R)] = 0 (2.69)

The first equation corresponds to the real part, which means we map the fermion problem

into a bosonic one, of which the wavefunction is positive everywhere. Note the third term

in the bracket on the left hand side of the equation is never an operator. It is a constant

factor that only depends on the phase of the trial wavefunction. The second equation

corresponds to the imaginary part. Since any eigenenergy must be real, the right hand

side must be equal to nothing but 0.

The idea of the fixed-phase approximation is to keep the phase of the wavefunction

the same as the phase of the trial wavefunction and solve the exactly bosonic problem

for |ΦT (R)| using DMC. It can also be shown that the expectation of the energy under

the fixed-phase approximation is an upper bound of the true energy.

2.4.7 Summary of DMC Algorithm

We summarize the DMC algorithm:

1.Generate a set of walkers from some initial distribution. This is done in VMC. Usually

we run VMC calculation first and take the distribution of the walkers generated by VMC

to run DMC.

2.Repeat the following iterative steps:

(1)Evaluate drift velocity vD of each walker.

(2)Move each walker to the proposed position according to

R = R
′
+ ∆tvD(R

′
) + χ (2.70)
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χ is a 3N-dimensional random vector drawn from a normal distribution with mean 0 and

variance ∆t

(3)Check whether the walker has crossed the nodal surface by checking whether the sign

of wavefunction has changed from R
′

to R.

(4)Accept the step according the acceptance ratio in Eq. 2.60.

(5)Calculate the weight of each walker

w = exp[−t(EL(R) + EL(R
′
)− 2ET )/2] (2.71)

and branch each walkers by calculating the copies of each walker. The number of copies

is

Nnew = [η + w] (2.72)

[ ] denotes the integer part, and η is a uniform random variable on the interval [0,1].

(6)Calculate the expectation values of interest by averaging the local energies of all the

walkers.

(7)Adjust ET to control the population of walkers.

3.After step 2 is repeated till the error bar of the quantity of interest is small enough.

2.4.8 Summary of Error Sources in DMC

Finally, we summarize the error sources in DMC.

1. Time step errors.

This is because of the approximation made in Eq. 2.39. We can control the error by

taking smaller timestep and using acceptance/rejection step, and finally extrapolate the

result to zero time step.

2. Population control bias

This bias exists because we artificially introduce ET to control the total population of

walkers. The choice of ET is empirical in Eq. 2.52. We can improve the result by using

larger number of population.

3. Fixed-node errors

This is clearly explained in the fixed-node approximation subsection. There is no way to

control the error except choosing a better trial wavefunction. However, the error is quite

small. For most chemical systems, it only accounts for 5% of the correlation energy.

4. Finite size errors
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This error exists when we need to calculate the extensive properties of systems with

infinite size. However, our simulation is possible only for finite systems. We will elaborate

this problem in Chapter 6.
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Chapter 3

Trial Wave Functions and

Pseudopotentials in Quantum Monte

Carlo

In this chapter we will be discussing how to build trial wavefunctions and how to treat

systems with heavy atoms using pseudopotentials. The quality of trial wavefunctions is

the most important factor that affects the accuracy of QMC calculations. A good trial

wavefunction leads to a very efficient calculation and much smaller variance of those

quantities we want to evaluate. Here we start with the properties of the many-body

wavefunctions and then discuss how to build a good trial wavefunction.

3.1 Trial Wave Functions

3.1.1 Slater Determinant

Electrons are fermions, therefore the wavefunctions must satisfy the anti-symmetry con-

ditions. The most common form of the anti-symmetric wavefunction is expressed in terms

33



of Slater determinants, which was discussed in the Hartree Fock Approximation.

Ψ(r1, r2, ..., rN , σ1, σ2, ..., σN) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) ... ψ1(rN , σN)

ψ2(r1, σ1) ψ2(r2, σ2) ... ψ2(rN , σN)

. . .

. . .

. . .

ψN(r1, σ1) ψN(r2, σ2) ψN(rN , σN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.1)

where the σi is the spin variables, and ψi is one-electron orbital which we can take from

HF or DFT calculations. For each orbital, we have to specify both the spatial coordinates

and the spin of each electron. In many cases, if the Hamiltonian does not contain spin

operator explicitly, the Hamiltonian commutes with the total spin operator S2 and the

z-component of spin operator Sz. The spin becomes a constant of motion so we can do

spin assignment to each electron. Once the spins are assigned, they never change over

time. Suppose the first N↑ electrons are spin-up, and N↓ = N −N↑ are spin-down. Now

we can remove the spin variable and replace the original Slater determinant Ψ with Ψ
′

as a multiplication of two determinants: one is for spin-up electrons, and the other is for

spin-down electrons.

Ψ
′
(r1, r2, ..., rn, σ1, σ2, ..., σn)

= Ψ
′
(r1, ↑, ...rN↑, ↑ rN↑+1 ↓, ..., rN , ↓)

=
1√
N↑!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) ... ψ1(rN↑)

ψ2(r1) ψ2(r2) ... ψ2(rN↑)

. . .

. . .

. . .

ψN↑(r1) ψN↑(r2) ... ψN↑(rN↑)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1√
N↓!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψN↑+1(rN↑+1) ... ψN↑+1(rN)

ψN↑+2(rN↑+1) ... ψN↑+2(rN)

. ... .

. ... .

. ... .

ψN(rN↑+1) ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It can be rigourously shown that the expectation of an operator(Ô) which does not

contain spin operator calculated using the multiplication of the two determinants is the

same as the one calculated using one single slater determinant[15].

〈Ô〉 =
〈Ψ′ |Ô|Ψ′〉
〈Ψ′ |Ô|Ψ′〉

=
〈Ψ|Ô|Ψ〉
〈Ψ|Ô|Ψ〉

. (3.2)
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3.1.2 Multireference Determinants

The final result of DMC calculation is strongly affected by the quality of the wavefunction.

By applying the fixed-node approximation, we enforce the projected wavefunction to have

the same nodes as the trial wavefunction. Therefore, the node of the trial wavefunction

has a direct consequence on the accuracy of the result. Our goal is to have a better

trial wavefunction with a better node. We can do this by applying a linear expansion of

Slater determinants taken from Configuration Interaction. The form of CI expansion was

discussed in Section 1.3. It is written as the following

Ψ = Ψ0 +
∑
i

∑
p

cpiΨ
p
i +

∑
ij

∑
pq

cpqij Ψpq
ij +

∑
ijk

∑
pqr

cpqrijkΨpqr
ijk + ... (3.3)

Using a large expansion of Slater determinant leads to a very expensive calculation, so

this is only applicable to some small chemical systems. Other methods, although not

used in the calculations presented in this thesis, also exisit to improve the node of the

wavefuction, such as Pfaffian pairing determinant or Backflow determinant for different

systems.

3.1.3 Cusp Conditions

In QMC method, our local energy is defined in Chapter 2 as

HΨ(R)

Ψ(R)
=

(−1
2

∑
i52

i +
∑

i<j Vij)Ψ(R)

Ψ(R)
, (3.4)

where R is a 3N dimensional vector representing the coordinates of N electrons in the sys-

tem. To be able to sample the local energy, we need the local energy to be finite otherwise

the result may have large fluctuations and may be meaningless. However, the potential

part, either the electron-ion potential or the electron- electron potential, diverges when

distance of the electron and ion or the electron and electron is zero. This fact enforces the

divergence in the kinetic energy part has to exactly cancel the divergence in the potential

part. We introduce the cusp condition in our variational trial wavefunction in order to

satisfy this property.

Considering two electrons with mass m1 and m2, we define the total mass and reduced

mass

M = m1 +m2; (3.5)
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µ =
m1m2

m1 +m2

; (3.6)

r =
m1r1 +m2r2

m1 +m2

; (3.7)

r = r1 − r2. (3.8)

The local energy is

EL = − 1

2M

52Ψ(r)

Ψ(r)
− 1

2µ

52Ψ(r)

Ψ(r)
+ V (r). (3.9)

Because the potential is spherically symmetrical, for convenience we write the equation

using spherical coordinates. We know the potential between the ith and jth particle is

V (r) =
qiqj
r

, with r = |ri − rj|. So

EL = − 1

2M

52Ψ(r)

Ψ(r)
− 1

2µ

1

Ψ(r)

∂2Ψ(r)

∂r2
− 1

µ

1

r

1

Ψ(r)

∂Ψ(r)

∂r
+
l(l + 1)

r2
+
qiqj
r
. (3.10)

For the simplest case, assume l = 0. It is easy to note the second term and the last term

in Eq. 3.10 diverges when r = 0. Thus when the local energy takes a finite value, these

two terms must be cancelled by each other.

− 1

µ

1

r

1

Ψ(r)

∂Ψ(r)

∂r
+
qiqj
r

= 0. (3.11)

This leads to
∂Ψ(r)

∂r

∣∣∣∣
r=0

= µqiqjΨ(r = 0). (3.12)

This is the general form of the cusp condition. We now discuss the specific forms of the

cusp conditions in different circumstances.

(1) Electron-nucleus cusp

If l = 0, then it is straightforward. Since the mass of the nucleus is sufficiently larger

than the mass of electron. µ is chosen to be 1. We can take qi = Z, which is the charge

of the nucleus, and qj = −1. Then electron-nucleus cusp condition is

1

Ψ

∂Ψ

∂r

∣∣∣∣
r=0

= −Z. (3.13)
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For l > 0, the radial part of the wavefunction can be written in the form rlρr and ρ is

finite at r = 0. Using the same way of analysis, the electron-nucleus cusp condition is

1

ρ(r)

dρ(r)

dr
= − Z

l + 1
. (3.14)

(2) Electron-electron cusp

For a system containing two electrons, the reduced mass is 1
2
. When they have the parallel

spin, the ground state is s state with l = 0. Therefore the cusp condition is

1

ρ(r)

dρ(r)

dr
=

1

2(l + 1)
=

1

2
. (3.15)

If they have anti-parallel spins, then the lowest state is p state with l = 1, so the cusp

condition is
1

ρ(r)

dρ(r)

dr
=

1

2(l + 1)
=

1

4
. (3.16)

In QMC, we introduce factor called Jastrow factor e−u(rij) to enforce the cusp condi-

tion of the wavefunction. The wavefunction Ψ is

Ψ(R) = e−u(rij)f(R) = e−u(rij)f(R(ij), rij, r), (3.17)

where the superscript (ij) means the coordinates of all other electrons except the ith and

jth electrons. And rij = ri − rj, r = 1
2
(ri + rj). We want to see how the Jastrow factor

should satisfy the cusp condition. Now we only focus on the ith and jth electrons. The

kinetic operator can be written as

−1

2
52 = −52

rij
−1

4
52

r, (3.18)

Since we are only interested in the situation when the ith electron and jth electron come

very close, we do not care the term of 5r. So we derive our local energy, which is

1

Ψ
HΨ =

1

e−u(rij)f(R)
(−52

rij
+

1

rij
)e−u(rij)f(R)

=
∂2u

∂r2
ij

+
2

rij

∂u

∂rij
− (

∂u

∂rij
)2 + 2

∂u

∂rij
r̂ij ·
5f
f
− 5

2f

f
+

1

rij
.
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There are two possibilities. The first one is when the spins of the two electrons are

anti-parallel, so f(rij) is a finite value at rij = 0. The diverging terms are 2u
′

rij
and 1

rij
.

Therefore, the cusp condition is
du

drij

∣∣∣∣
r=0

= −1

2
. (3.19)

If the spins are parallel, then f(rij) = 0 when rij = 0. f(rij) should be an odd function

of rij. When rij goes to zero, we can expand f(rij) up to the second order

f(r) = 5f(r)

∣∣∣∣
r=0

· r. (3.20)

This makes the term 2u
′
r̂·5f

f
also diverge. Let a = 5f(r)|r=0. So the sum of the diverging

terms are
2u
′

r
+

2u
′

a · r
r̂ · a+

1

r
=

4u
′
+ 1

r
. (3.21)

Then the cusp condition is
du

drij

∣∣∣∣
r=0

= −1

4
. (3.22)

This is the same as shown in Eq. 3.15 and 3.16.

3.1.4 Slater-Jastrow Wavefunction

The most popular form of the wavefunction in QMC is called the Slater-Jastrow wave-

function. Most of the calculations presented in the thesis use Slater-Jastrow wavefunction.

The Slater-Jastrow wavefunction is a product of Slater part and Jastrow part.

Ψ(R) = Slater(R)exp(J(R)). (3.23)

The Slater part can be a single determinant or a linear combination of determinants as

discussed in the previous section. The Jastrow factor here is used to include the correlation

effects between the particles. The choice of Jastrow factor has a lot of freedom as long

as it satisfies the well-known conditions. Generally, the correlation factor J(R) is

J(R) = χ(ri) + u(rij) + w(rijI). (3.24)
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χ(ri) is the one-body term describing the electron-nucleus correlation with electron-

nucleus cusp conditions. u(rij) is the two-body term describing the electron-electron

correlation with electron-electron cusp conditions. Since the uij term is dependent on the

relative distance between the two electrons, it is able to catch the correlation beyond the

one-particle effect. For uniform system like electron gas, having the uij term is enough.

However for nonuniform systems, this factor changes the electron density by pushing the

electrons from the high-density regions to low-density regions. This negative effect is not

very good as our Slater determinant usually provides a very accurate one-particle density.

The χ(ri) term can compensate for the loss by adjusting the electron density near the

nucleus. For non-uniform systems like atomic and molecular systems, both χ(ri) and

u(rij) are needed as they work together to describe the correlation without decreasing

the quality of the density. For more accurate calculations, it is necessary to include a

three-body term which depends on the position of two electrons and one nucleus. [16]

3.1.5 Basis Functions of Jastrow Factor

In QMC calculations, the terms in the Jastrow factor χ(ri), u(rij) and w(rijI) are ex-

pansions of the chosen basis functions. For example, the one-body term is expressed

as

χ(ri) =
∑
k

akfk(i). (3.25)

fk is the basis function. Expressions for the two-body and three-body terms are similar.

The basis function we use in the cusp conditions are

f(ρ) = c(
ρ− ρ2 + 1

3
ρ3

1 + γ(ρ− ρ2 + 1
3
ρ3)
− 1

γ + 3
), (3.26)

where ρ = r/rcut and rcut gives the cutoff distance. For r > rcut, f(ρ) = 0. we enforce

the cusp condition by choosing correct c values. In electron-nucleus cusp, c = − Z
l+1

. In

electron-electron cusp, c = 1
2

for spin-unlike electrons, and c = 1
4

for spin-like electrons.

γ affects the curvature of the function and can be optimized. The cusp functions for

electrons with antiparallel spin and parallel spin are plotted in Fig.3.1.

The Polynomial Pade functions are also used in the Jastrow factor. It can smooth

out the wavefunction and give better variational energies and small fluctuations. Since

the introduction of electron-electron cusp condition may have a negative effect on one-
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Figure 3.1: Basis function for cusp conditons

particle density, the Polynomial Pade functions can compensate for the negative effect

and also preserve the cusp conditions. The form of Polynomial Pade functions is

fpade(ρ) =
1− ρ2(6− 8ρ+ 3ρ2)

1 + γρ2(6− 8ρ+ 3ρ2)
. (3.27)

ρ is defined in the same way as in cusp functions. Note that when ρ = 0, the derivative

Figure 3.2: Basis for Polynomial Pade functions
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f
′
(ρ) is zero, so the function does not change the cusp condition. When r = rcut, the

function approaches to zero, so the wavefunction in the region r > rcut is unchanged.

Usually, we use an expansion of the polynomial Pade functions in the Jastrow factor.

For example, the piece of the one-body electron-nucleus functions is

χ(r) =
∑
i

cifpade(r), (3.28)

where cis are the coefficient to be optimized. Several functions with different curva-

tures(different β) are employed so they provide more variational freedom.

3.1.6 Effect of Jastrow Factor on QMC Calculations

In variational Monte Carlo calculations, the effect of adding Jastrow factor is clearly

visible. It brings down the total energy. This can be understood that the Jastrow factor

reduces the probability of the two electrons coming too close to each other. When the

electrons move further away from each other, they have less repulsive Coulomb energy

and move slowly. Another positive effect of Jastrow factor is to reduce the fluctuations in

energy because as electrons are further away from each other the wavefunction becomes

smoother. In diffusion Monte Carlo calculations, since the Jastrow factor remains positive

everywhere, it does not change the structure of the trial wavefunction nodes. Therefore, in

principle, if the running time is long enough, the added Jastrow factor does not change the

outcome of DMC calculations. The only thing that the Jastrow factor can do is to reduce

the fluctuations. However, for most systems with large atoms, the pseudopotential is

needed, then by using some approximations we can generate errors. The pseudopotential

will be discussed in the following sessions.

3.2 Wavefunction Optimization

In Jastrow wavefunction, the basis sets of cusp and Pade functions contain several vari-

ational parameters. Suppose our sample points R are fixed, our variational energy EV is

dependent on the parameters in Jastrow factor.

EV (c) =

∫
|ΨT (c)|2EL(c)dR∫
|ΨT (c)|2dR

, (3.29)
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where c is the set of parameters in Jastrow. We want those parameters chosen in such a

way that they provide better variational energies and small fluctuations. This is achieved

by optimizing the wavefunction. There are several approaches to do this. One can optimize

the wavefunction by optimizing the variance or the variational energy, or we may choose

a mixed function to optimize the variance and energy together.

If we choose to minimize the variance of the energy, then the target function is

fmin{c} = σ2(c) =

∫
Ψ2
T (c)[EL(c)− EV (c)]2dR∫

Ψ2
T (c)dR

. (3.30)

Using the target function is good but not that convenient. Whenever the parameter set

c changes, we need to generate a new distribution function Ψ2
T (c). This can be avoided

if we write our target function fmin(c) in the following way

fmin{c} = σ2(c) =

∫
Ψ2
T (c0)w(c)[EL(c)− EV (c)]2dR∫

Ψ2
T (c0)w(c)dR

, (3.31)

where c0 is the initial value of parameters, and w(c) =
Φ2

T (c)

Φ2
T (c0)

. This is the correlated

sampling.

Another way is to minimize the total energy in Eq. 3.29. In the calculation presented

throughout this thesis, a mixed procedure is employed to both reduce the fluctuations and

have a better variational energy. The target function we use here in the mixed procedure

is

fmin(c) = weight ∗ EV (c) + (1− weight) ∗ σ2(c), (3.32)

where the value weight is here is 0.95.

Several numerical methods exist to optimize the target function. Here we choose

the Levenberg-Marquardt method which is a combination of steep descent method and

Newton method. To do this, we need to compute the Hession matrix H and the gradient

vector g of the target function with respect to the parameter set {c}. We first start with

some initial value c(0), and update {c} by

c(i+1) = c(i) − (H + µI)−1g, (3.33)

where µ is the damping parameter we need to determine. µ has to be positive so H + µI

is a positive definite matrix so fmin is descending. If µ = 0, then the method is reduced to
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Quasi-Newton Method. If µ is chosen to be really large, the diagonal elements in H +µI

are dominant, then the method becomes the steep descent method. At each step, we

compute the following

r =
f

(i)
min − f

(i+1)
min

1
2
(c(i+1) − c(i))(c(i+1) − c(i) − g)

. (3.34)

Then if r > 0,

µ(i+1) = µ(i)max[
1

3
, 1− (2r − 1)3] (3.35)

otherwise

µ(i+1) = 2nµ(i) (3.36)

The details of this method is discussed in Ref. [17]

It is straightforward to calculate the gradient and the Hessian of the target function

for optimizing variance and energy[18] [19]. In optimizing the variance, the ith component

of gradient vector of the target function is

gi = 2[< E
(i)
L (EL−EV ) > + <

Ψ
(i)
T

ΨT

E2
L > − <

Ψ
(i)
T

ΨT

>< E2
L > −2EV <

Ψ
(i)
T

Ψ
(EL−EV ) >],

(3.37)

where E
(i)
L , Ψ

(i)
T is the partial derivative with respect to ci.

Hij = 2 < (E
(i)
L )− E(i)

V )(E
(j)
L − E

(j)
V ) > (3.38)

In minimizing the energy, the gradient components are

gi = 2 <
Ψ

(i)
T

ΨT

(EL − EV ) > (3.39)

and the Hessian components are

Hij = 2[< (
Ψ

(ij)
T

ΨT

+
Ψ

(i)
T Ψ

(j)
T

Ψ2
T

)(EL−EV ) > − <
Ψ

(i)
T

ΨT

E
(j)
V > − <

Ψ
(j)
T

ΨT

E
(i)
V > + <

Ψ
(i)
T

Ψ
E

(j)
L >],

(3.40)

where the superscript denotes components of the gradient or Hessian.
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3.3 Pseudopotentials

3.3.1 The need of Pseudopotentials

In quantum Monte Carlo calculations, the computational cost increases rapidly with the

size of the systems. It has been estimated the scaling of the calculation with Z ranging

from Z5.5 [20]to Z6.5[21]. Due to this large scaling, many application of QMC methods

to large systems are almost impossible. On the other hand, in the atomic or molecular

systems, the deep Coulomb potential near the nuclei gives rise to large oscillations of the

wavefunction, leading large fluctuations of the local energy. This problem can be alle-

viated by using a more accurate trial wavefunction but may still be present. Moreover,

for large systems a very good quality of trial wavefunction is difficult to obtain. Fortu-

nately, most of the properties that we are interested in do not depend too much on the

core electrons(electrons from the inner shell of the atom), since the core states tend to

be rigid and do not affect many properties of electronic structure in the valence space,

such as chemical bonds, excitations, band gaps. So we introduce effective potential called

pseudopotentials which remove the existing potential in the region of the core electron

orbitals and replace with an effective potential to mimic the effects of the core electrons.

3.3.2 The Construction of Pseudopotentials

The construction of pseudopotentials is not trivial. The pseudopotential must satisfy

several conditions. The most important one is that outside the region of core electrons,

the states of valence electrons should be identical to those states as if the core electrons

are present. There exist many schemes to construct pseudopotentials used in ab initio

calculations such as norm-conserving pseudopotentials and ultra-soft pseudopotentials

[22], [23], [24], [25]. In the calculations presented in this thesis, we will apply energy-

consistent pseudopotentials. This requires the eigenenergies should match exactly the all-

electron energies of a number of different configurations for the atom under consideration.

Since the atomic system has spherical symmetry, electrons in the valence space with

different angular momentum l could be treated differently, which means a l-dependent

pseudopotential. In QMC calculation, the pseudopotential for a given atom consists of a

local part universal to all the angular momenta and a nonlocal part which is dependent

on angular momentum. For a specific atom in the core region, the pseudopotential takes
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the form

Vps(r) = Vloc(r) + V̂nl(r), (3.41)

where Vloc(r) is the local part, which usually includes the potential from the ion. V̂nl(r)

is the nonlocal part. The nonlocal part can be written as

Vnl(r) =
∑
l,m

Vl(r)|lm >< lm|, (3.42)

where Vl(r) is a function of r, which is l-dependent. More precisely, it should depend on

quantum number j, and j = l ± 1
2
, so we have two terms: Vl+1/2 and Vl−1/2. But if we

don’t take fully relativistic effect into account, we can simply take the average of Vl+1/2

and Vl−1/2, and fold both terms into a single term Vl(r). |lm >< lm| is a projection

operator. When this nonlocal operator acts on a function, it works as

V̂nl(r)f(r) =
∑
l,m

Vnl(r)Ylm(Ω)

∫
Y ∗lm(Ω

′
)f(r

′
)dΩ

′
, (3.43)

where Ylm is spherical harmonic functions.

3.3.3 Pseudopotential in VMC and DMC

In VMC, the contribution of the nonlocal pseudopotential operator to the local energy

can be written as

Enl =
V̂nlΨT

ΨT

(3.44)

=
∑
l

Vnl(ri)
l∑

m=−l

Ylm(Ωri)

∫
Y ∗lm(Ωr

′
i
)

×ΨT (r1, ..., ri−1, r
′
i, ri+1, ..., rN)

ΨT (r1, ...ri−1, ri, ri+1,...,rN)
dΩr

′
i
,

because
l∑

m=−l

Ylm(Ωri)Y
∗
lm(Ωr

′
i
) =

2l + 1

4π
Pl[cos(θ

′

i)], (3.45)
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where Pl is the Legendre polynomial,

Enl =
∑
l

Vnl(ri)
2l + 1

4π

∫
Pl[cos(θ

′

i)]×
ΨT (r1, ..., ri−1, r

′
i, ri+1, ..., rN)

ΨT (r1, ...ri−1, ri, ri+1,...,rN )
dΩr

′
i
. (3.46)

This involves an integration over the surface of the sphere centered at r
′
. This integral

can be calculated numerically by choosing certain number of grid points on the surface

of the sphere. It is proved that for the maximum l = 3 it is sufficient to choose 6 grid

points for reasonable accuracy[26]. Higher angular momentum requires more grid points.

In DMC, the case is more complex since the nonlocal operator brings trouble when we

want to evaluate the Green’s function. One way to overcome this is to apply localization

approximation. We rewrite our diffusion-drift equation

∂tf =
1

2
52 −5 ·(vDf)− (Ĥ − ET )ΨT

ΨT

f + (
V̂nlΨT

ΨT

− V̂nlΦ

Φ
)f. (3.47)

In the localization approximation, the last term in curly brackets is ignored. This gener-

ates an error and one can prove the error is proportional to (ΨT − Φ0)2[26]
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Chapter 4

Study of Dipole Moments of LiSr

and KRb Molecules

sections of this chapter also appeared in

Study of dipole moments of LiSr and KRb molecules by quantum Monte

Carlo methods

Shi Guo , Michal Bajdich , Lubos Mitas, Peter J. Reynolds

Molecular Physics, Volume 111, Issue 12-13, Pages 1744-1752,
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Heteronuclear dimers are of significant interest to experiments seeking to exploit ultra-

cold polar molecules in a number of novel ways including precision measurement, quantum

computing, and quantum simulation. We calculate highly accurate Born-Oppenheimer

total energies and electric dipole moments as a function of internuclear separation for two

such dimers, LiSr and KRb. We apply fully-correlated, high-accuracy quantum Monte

Carlo methods for evaluating these molecular properties in a many-body framework. We

use small-core effective potentials combined with multi-reference Slater-Jastrow trial wave

functions to provide accurate nodes for the fixed-node diffusion Monte Carlo method. For

reference and comparison, we calculate the same properties with Hartree-Fock and with

restricted Configuration Interaction methods, and carefully assess the impact of the re-

covered many-body correlations on the calculated quantities. For LiSr we find a highly

nonlinear dipole moment curve, which may make this molecule’s dipole moment tunable

through vibrational state control.

4.1 Introduction

Motivated both by the desire for deeper understanding of basic physics and of numerous

potential applications, there has been a great deal of work over the last few years devoted

to cooling small molecules [27] and molecular ions [28]. This follows up on a few decades of

exciting progress in cooling and trapping of atoms and atomic ions. Molecules, of course,

are far more challenging, due to their complex internal structure, particularly their many

internal degrees of freedom, such as vibrational and rotational levels, in addition to fine

and hyperfine structure. A number of approaches have been pursued, with varying degrees

of success. While making molecules cold has been achieved in numerous ways, reaching

the ultra-cold regime, and particularly the quantum degenerate regime, has been limited.

The most general methods of cooling molecules use buffer gases and supersonic ex-

pansion [29, 30, 31], or velocity filtering [32] techniques. Another direct approach is Stark

decceleration [33]. On the other hand, direct laser cooling of molecules, in analogy to the

very successful approach for neutral atoms, was long deemed impractical due to the com-

plex level structures. The simplest and most widespread method of direct laser cooling

of atoms is Doppler cooling, where radiative forces originate from momentum transfer to

atoms from a laser field, and subsequent spontaneous emission of slightly higher energy

photons into random directions. Repeating this optical cycle tens of thousands of times
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cools neutral atoms very quickly to the Doppler limit (which is mass dependent, but typ-

ically reaches sub-mK temperatures). For molecules, the problem with the conventional

scheme is that excited states can radiatively decay out to a multitude of other states. This

leads to decays that destroy any closed cycling transitions. Exciting population from all

these states back to the starting point requires an impractically large number of lasers.

Only recently has laser cooling of a special class of molecules been demonstrated [34, 35]

based on insights from earlier work [36, 37].

Most successful at reaching into the ultra-cold regime are methods that create the

molecules from previously cooled atoms. However, the number of molecules produced

in this way is fairly small (≈ 104). Such methods include photoassociation [38] and

magnetoassociation (exploiting Feshbach resonances) [39]. While the former has been a

well-established technique to produce homonuclear dimers from cold atoms, its applica-

tion to produce heteronuclear molecules from two different species of laser-cooled alkali

atoms is more recent. Such diatomic molecules can be polar, and this is of particular

interest (see, for example, reviews in [27, 30, 40, 41]).

The usefulness of polar molecules arises because they, unlike neutral atoms, interact

via the characteristic long-range, anisotropic dipolar interaction, making them control-

lable by external electric fields. On the other hand, they are less strongly coupled to

the environment than ions, making them less prone to decoherence [42]. This makes

them attractive for quantum manipulation, such as for quantum information processing

[43, 44, 45, 46, 47, 48], and precision measurements to test symmetries [49], [50], [51],

[52] and the constancy of fundamental “constants” [53, 54, 55, 56, 57, 58].

Additional interest lies in alkali-alkali earth dimers such as LiSr, one of the molecules

studied here. In contrast with alkali dimers, the unpaired spin makes them able to be

manipulated with both external electric and magnetic fields. This provides an avenue

for different physics to be explored, whether in fundamental tests, as qubits, in optical

lattices where the competing interactions are important, or potentially even for use in

atomic clocks where atoms such as Sr are already showing great potential [59].

Cooling, trapping and quantum manipulation of polar molecules will have an impor-

tant impact on a diverse range of fields beyond just fundamental tests and quantum

computing. One such example is in condensed matter physics, through quantum “emu-

lation” or simulation of many-body quantum physics that is inaccessible to even today’s

(and any day’s) high-performance computers, let alone to analytical solution (for ex-
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ample [60, 61, 62]). Cold polar molecules trapped in optical lattices make an extremely

interesting many-body system (with long-range dipole-dipole interactions) promising a

rich variety of novel quantum phases, such as supersolids and topologically ordered states

[61, 63]. One can imagine many other novel strongly-correlated quantum phases, partic-

ularly in reduced dimensions [64, 65, 66]. Local control of the density or orientation of

polar molecules may allow one to create or simulate charge density waves or (pseudo-)

spin-density waves, or even a random, glassy system.

Another and rapidly emerging area is ultra-cold chemistry [39, 40, 67, 68, 69]. In the

regime where the de Broglie wavelength of the molecule becomes comparable, or even

orders of magnitude larger than the molecule itself, the classical notion of a reaction

coordinate is at odds with quantum mechanics. Coherent population transfer methods

(e.g., STIRAP) have already produced a gas of fermionic 40K87Rb molecules with a

temperature of a few hundred nano-Kelvin at a phase-space density getting very close to

that needed to achieve degeneracy. In this regime one expects entirely new phenomena in

looking at chemical reactions at ultralow energies [70]. In addition to just potential energy

surfaces being relevant, the ultracold reaction rate is controlled by quantum statistics

and quantum coherence effects, including tunneling. Moreover, quantum statistics only

allows certain collisions, and tunneling leads to threshold laws. In this regime, quantum

control also can take on new meaning, with resonance-mediated reactions and collective

many-body effects becoming prominent. Polar molecules also provide a handle for control

through application of relatively weak electric fields.

Among applications, cold molecules hold great promise for improving sensors of all

sorts. So far, all demonstrated matter-wave interferometric sensors utilize atoms. Using

dipolar molecules instead of atoms could lead to orders-of-magnitude improvements in

the sensitivity of such sensors [71]. The advantage comes from the ability to guide the

molecules with modest electric field gradients, thereby creating steeper confining poten-

tials. Steeper potential gradients allow one to load waveguide structures more efficiently;

this leads to a larger number of particles and better statistical sensitivity. Also because

of the steeper potentials, molecules can be kept further away from the wires and guid-

ing surfaces, thus improving performance, as these are major sources of decoherence.

Moreover, because sensitivity (e.g., to rotation) is proportional to the area enclosed by

an interferometer, a large-area storage ring (with electrostatic guiding) [72] becomes a

possible interferometer.
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Bi-alkali molecules produced thus far include RbCs [38, 73], KRb [74, 75, 76, 77],

NaCs [78] and LiCs [79, 80]. Photoassociation and magnetoassociation can be combined

with STIRAP to allow coherent population transfer into a low-energy bound state, and

significantly enhances the rate of molecular production [74, 77, 81, 82].

The strength of the dipole moment in these diatomics is critical to their possible

uses, ranging from their potential as qubits, their use in precision measurement experi-

ments, the nature of their quantum phase transitions, as well as simply their ability to

be manipulated.

This motivates our study, which is focused on applying first principles methods to

two polar diatomics, one a bi-alkali, and one an alkali-alkali earth. Specifically, we use

quantum Monte Carlo in combination with basis set methods to look carefully at KRb

and LiSr, both in their ground states (X1Σ+ and X2Σ+, respectively).

4.2 Methods

Since the bonds in all these systems are weak, and consist of a mixture of covalent and

van der Waals bonding mechanisms, first principles calculations tend to be quite involved

and highly sensitive to basis sets, degree of correlation included, nature of approxima-

tions, and other factors. Density Functional Theory (DFT) for van der Waals systems is

often less than satisfactory, typically showing a varying degree of overbinding without any

obvious systematic trends. Several new DFT functionals with corrections for dispersion

interactions have been proposed very recently; see for example, [83, 84]. However, thor-

ough testing and benchmarking of these new DFT approaches is necessary before they

can be reliably applied across a variety of systems. Dispersion interactions result from

transient-induced polarizations between the interacting constituents, and are therefore

subtle many-body effects which are difficult to capture in the functionals framework.

On the other hand, the powerful arsenal of basis-set correlated methods, such as

Configuration Interaction (CI), have their own challenges for systems such as these. For

example, the dipole moment can be very sensitive to the basis set, and convergence for

weakly bonded systems can be very slow [85]. In addition, the dipole moment appears

highly sensitive to the level of correlation used, especially for problems which require

multi-reference treatment. This is well known, but a systematic study can be found in

Ref. [85]. Our CI results here also demonstrate this. It is therefore important to explore
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other types of methods to understand the impact of many-body effects more thoroughly.

That is why we need the highly accurate alternative approach, which is quantum Monte

Carlo (QMC) [86, 21]. QMC is very attractive since it is in principle exact; in practice

due to approximations it has a residual weak sensitivity to the size of basis sets, and it

captures the correlations at a level of 90-95% [86, 15, 87]. That is something that is quite

difficult to achieve by correlated methods based on expansions in basis sets.

In fact, there are previous studies of molecular dipole moments calculated by QMC

methods for a few molecular systems. Schautz and colleagues carried out QMC study

of the carbon monoxide molecule and obtained a very good estimate for this non-trivial

problem in which correlation reverses the sign of the dipole obtained at the Hartree-Fock

level [88]. The dipole moment of the lithium hydride molecule was computed by fixed-

node diffusion Monte Carlo (DMC) in a good agreement with experiment [89]. Recently,

several transition metal monoxide molecules have also been calculated by QMC methods.

Besides the binding energies and equilibrium bond lengths, the dipole moments were also

calculated, all with reasonably good agreement to experiment [90]. In addition, transition

dipole moments such as for the Li atom were calculated by QMC approaches some time

ago [91].

For our calculations here, we employ the two most common QMC methods, variational

and fixed-node diffusion Monte Carlo (VMC and DMC). The details of these two methods

were discussed in Chapter 2.

The choice of the trialfunction is critical for the calculations because the quality of the

trial wave function plays two roles. First, highly accurate trial functions lead to smaller

statistical fluctutations and faster QMC sampling and convergence. Second, better trial

functions typically go hand-in-hand with improvements of the nodal hypersurfaces, and

hence result in smaller fixed-node bias. Clearly, we want to use the best trial function we

can. Traditional methods, including correlated approaches, provide a convenient starting

point in this respect. In addition, however, quantum Monte Carlo can employ explicitly

correlated wave functions as well, without prohibitive computational cost. This enables

us to reach beyond the limits of traditional approaches, even before beginning to project

out the true (fixed node) ground state.

In our calculations, we have used the Slater-Jastrow trial wave functions which em-

body both the traditional computational chemistry starting point and explicit correlation

in the two factors. The explicit form of the Slater-Jastrow trial wave function was dis-
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cussed in Chapter 3. The orbitals for our Slater determinats are obtained from Hartree-

Fock calculations, and our CI expansion is calculated using the GAMESS package. The

Jastrow variational parameters and the CI expansion coefficients are optimized in VMC

by minimizing a linear combination of the variational energy and the variance of the

local energy, [HΨT ]/ΨT . The Jastrow variational parameters are optimized in VMC by

minimizing a linear combination of the variational energy and the variance of the local

energy, [HΨT ]/ΨT . The optimized trial function is then employed in our fixed-node DMC

runs.

In diffusion Monte Carlo, expectation values of quantities which commute with the

Hamiltonian are exact [86]; however, expectation values of non-commuting operators, Ô,

are estimated by mixed estimators, i.e., with the distribution ΨTΦ, instead of Φ2. One

can correct for this in a number of ways [91, 92]. A commonly used approximation is

< Φ|Ô|Φ >≈ 2 < Φ|Ô|ΨT > − < ΨT |Ô|ΨT > .

Exact sampling of Φ2, while computationally more complex and significantly more costly,

is also possible [93, 15, 92]. Accuracy gained from exact sampling methods is limited

by any approximations involved, both fundamental and technical. These include, e.g.,

the fixed-node restriction and the localization approximation in treating the nonlocal

effective core potentials (see below). Since the optimization of the wave function is done

stochastically on finite samples, it is difficult to eliminate a possible optimization bias

reflecting differences in the localization error with different Jastrows. This is especially

so in the case of weakly bonded systems such as LiSr (with bonding of the order of 0.006

a.u.). Therefore, with any likely improvements to be invisible, the results below are based

on the mixed estimator, which provides a good balance between accuracy and efficiency

of the calculations.

4.3 Calculational Details

The pseudopotential we ultimately used for the bulk of the calculations here removes

small cores for the elements beyond the first row, with the resulting configurations of va-

lence electrons in KRb given as K(3s23p64s1) and Rb(4s24p65s1). Gaussian basis sets used

in the calculations were gradually increased in size until we observed saturation to about

≈ 0.001 Eh at the self-consistent level; basis sets of 25s22p13d/[4s4p3d] were used for
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both K and Rb. In the LiSr calculation, we kept all Li atom electrons in the valence space,

while for Sr we eliminated 18 core electrons, so that the valence configuration became

Sr(4s24p65s2). Quite extensive basis sets for Sr and Li, with sizes 7s6p5d1f/[7s4p2d1f]

and 27s7p1d/[7s5p1d], provided saturated HF energies at the level of 0.001 Eh or better.

A proper description of the dipole moments requires high-quality correlated methods.

This is true in particular for LiSr, which does not exhibit any binding at the HF level.

(KRb, on the other hand, has a single σ bond, so that using a single-reference wave

function, and CI with single and double excitations, was deemed to be appropriate in

this case.) For LiSr we explored several correlation levels and sizes of active occupied

and virtual spaces. In particular, we carried out singles and doubles (SD) with 5 active

occupied and 70 virtual orbitals; SD and triples (SDT) with 5 active occupied and 55

virtual orbitals; SDT and quadruples (SDTQ) with 3 active occupied and 48 virtual

orbitals. Excitations beyond doubles proved to be important for the LiSr dipole moment.

Even with quadruples included, it remained difficult to be certain that the correlations

were adequately described.

This is where QMC methods provide an important alternative, and a powerful option

to probe for correlations beyond what is practical with CI. For QMC, the CI(SD) wave

functions only serve as a starting point—as trial functions. They are truncated to only

their most significant terms by imposing a cutoff on the weights of the configuration state

functions. Different cutoff values from 0.05 to 0.01 were tested. It turned out that the

optimal cutoff value is around 0.03-0.05. (Values smaller than this no longer decreased

the QMC energy within the detectability of the error bars.) Using a cutoff of 0.05 for LiSr

and 0.03 for KRb, we were able to improve the nodal surfaces (evidenced by lower QMC

energy) with reasonable efficiency and statistical consistency. For completeness and to

gain more confidence of our DMC results, we performed DMC calculations with a very

large CI determinant expansion. The trial wavefunction was taken from the CI(SDT)

expansion with a smaller cutoff value 0.025. The Jastrow factor has the simplest form

including only cusp conditions. No optimization of Jastrow factor was used so that there

are no optimization bias. We compare the results of several DMC calculations.
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Figure 4.1: The binding energies of LiSr as a function of the bond length with HF and
CI(SD) methods.

4.4 Results and Discussion

The energies that we obtain as a function of bond length are shown in for LiSr in Fig-

ure 4.1 and Figure 4.3, and for KRb in Figure 4.2 and Figure 4.4. We first compare our

HF and CI(SD) calculations and then comprare the best CI calculation with the diffusion

QMC (DMC) results. For LiSr, we show the QMC results with two different trial func-

tions, DMC1 and DMC2. We see that the QMC correlation energy for both molecules is

considerably better than that found by the CI method, and provides significant overall

improvement of the potential energy surfaces.

As previously discussed, the dipole moment of LiSr is particularly sensitive—to pretty

much everything (basis set size, level of correlation in the theory, nodes in the QMC

trial function, etc.). We show in Figure 4.5 this sensitivity with respect to amount of

correlation in the theory. As is clear, CI SDT, which is often sufficient, has not converged

here. It would be difficult to know if even CI SDTQ is sufficient were it not for our QMC
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Figure 4.2: The binding energies of KRb as a function of the bond length with HF and
CI(SD) mehtods
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Figure 4.3: The binding energies of LiSr as a function of the bond length with different
methods. Two optimized Jastrow DMC trial wave functions are used for LiSr. DMC1
denotes a single Slater determinant, while DMC2 is multi-reference with a cutoff weight
of 0.05. The statistical error bars of the QMC results are approximately of the symbol
size. The CI curves correspond to CI/SD
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Figure 4.4: The binding energies of KRb as a function of the bond length with different
methods. The DMC trial wave function is multi-reference, with a cutoff weight of 0.03,
and again an optimized Jastrow. Here and in subsequent figures, the statistical error bars
of the QMC results are approximately of the symbol size. The CI curves correspond to
CI/SD.
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Figure 4.5: The dipole moment of LiSr calculated by the CI method with SD, SDT and
SDTQ levels of correlation, as described in the text.

calculation. In Figure 4.6 we compare the CI SDTQ result for the dipole moment with

our two QMC calculations with different trial functions. While the two QMC results

are not identical, they vary immensely less than the different CI calculations. Moreover,

the QMC with refined nodes from the multi-reference trial function gives almost the

same results as CI SDTQ. This provides additional confidence in this result. This can

be seen better in the expanded Figure 4.8, where we compare the dipole moment of LiSr

as computed from only correlated methods, and compare our results against a recent

result in the literature as well. Since the dipole moment does not commute with the

Hamiltonian, by optimizing the Jastrow factor to obtian a lower variational energy, it is

easy to generate some optimiation bias on the dipole moment. To assess how large the

optimization bias is, in Figure 4.9, we compare the DMC result using large CI expansion

but no optimization with the ones with optimized Jastrow. The two DMC results show

very good agreement overall, indicating the optimization bias is very small in this case.

Figure 4.7 shows the dipole moment results for KRb. The bonding behavior, as well

as the dipole moment of KRb, is rather straightforward to understand. There is a single
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Figure 4.6: The dipole moment of LiSr as a function of internuclear distance, as obtained
in DMC, HF and CI methods (CI/SDTQ). The trial wave functions, DMC, DMC1 and
DMC2 are the same as described in Figure 4.3.
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Figure 4.7: The dipole moment of KRb as a function of internuclear distance, as obtained
in DMC, HF and CI methods (CI/SD). The trial wave functions, DMC, is the same as
described in Figure 4.4
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Figure 4.8: Dipole moment for LiSr from our best CI and QMC calculations compared
with results from Ref.[94]. The pronounced nonlinearity allows switching of the value of
d by state selection to a vibrational state near dissociation. See text.

σ bond formed from the K(4s) and Rb(5s) atomic states. The dipole moment monotoni-

cally increases with the bond length, corresponding to growth of the distance between the

effective charges, and also some possible growing enhancement of the electron density in

the region of the K atom. This trend is observed already at the HF level, indicating that

it is driven by the one-particle self-consistent balance of the energy contributions. How-

ever, quantitatively, the HF dipole moment can be seen to be too large. This is because

electron correlation decreases the charge polarization over the whole range of calculated

interatomic distances. This can be equivalently understood as a result of the well-known

HF bias towards larger ionicity of the bonds. The absence of correlation tends to make the

exchange more prominent, which drives the electronic structure towards stronger charge

polarization. It is interesting to observe that the dipole moments computed from both

of our correlated methods appear to be rather close, although the degree of description

of the many-body effects is very different, with the CI recovering only about 30% of the

correlation energy compared to ≈ 90% in QMC.

On the other hand, LiSr has a more complicated electronic structure due to the
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Figure 4.9: Dipole moment for LiSr from our HF, CI(SD), and different DMC meth-
ods. The trial wavefunction for DMC2 is the same as Figure 4.3. DMC3 uses CI(SDT)
determinant expansion with cutoff 0.025 and no optimization of Jastrow.
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presence of the two (5s2) electrons in the outermost shell of the Sr atom, with the

resulting open-shell X2Σ+ molecular ground state. The last valence electron occupies an

anti-bonding σ level which is formed by the combination of Li(2s) and Sr(5s) atomic

states. The overall bond is thus weaker, and this accounts for the lack of binding seen

in the HF method in Figure 4.1. Even after including ≈ 90% of the correlation energy

via QMC, as we have done here, the binding is small, only of the order of ≈ 0.25 eV.

Even more interestingly, the dipole moment changes sign as a function of separation! This

behavior is visible in all three methods, implying that one can trace its origin to changes

at the single-particle level. Indeed, by plotting the isosurfaces of the Hartree-Fock HOMO

(antibonding σ) and LUMO orbitals (see Figure 4.10 and Figure 4.11) we see that as the

bond length increases, the nature of the orbitals change very significantly. These changes

lead to sizeable restructuring of the electron density already at the HF level, with the

resulting sign change of the dipole moment as plotted in Figure 4.5,Figure 4.6, Figure 4.8,

Figure 4.9.

The quality of the trial wave function and its nodal surface has a significantly more

pronounced impact on the LiSr dipole moment result than on the KRb moment, and one

cannot rely on a single configuration for the former. The inclusion of the most important

configurations from the CI expansion improves the accuracy of the DMC estimations quite

significantly. It is interesting, if somewhat unexpected, that our QMC results obtained

with our best trial function, apart from the statistical noise, agree remarkably well with

our most accurate CI calculations. This consistency is reassuring since the employed

methods are largely independent, and capture the electron correlations in very different

manners. The need to employ triples and quadruples in CI indicates that correlations

beyond multi-reference configurations based on singles/doubles excitations are important.

On the QMC side, the single configuration trial function already captures the main

correction to the HF dipole moment, due to the correlations, as can be seen in Figure 4.6.

However, for high accuracy results, the complicated orbital restructuring of the LiSr

molecule clearly requires a multi-reference treatment which includes the dominant non-

dynamical effects explicitly, thereby improving the nodal surface. This accounts for the

difference seen in Figure 4.6 between DMC1 and DMC2. This observation is very much

in line with previous QMC calculations of other systems with significant multi-reference

or near-degeneracy effects.

The spectroscopic constants for these molecules have been computed, and are shown
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Figure 4.10: Isosufaces of the positive and negative lobes of the highest occupied molec-
ular orbital (HOMO) of LiSr, for interatomic distances 5 a.u. (top) and 7.5 a.u. (bottom).
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Figure 4.11: Isosurfaces of the positive and negative lobes of the lowest unoccupied
molecular orbital (LUMO) of LiSr, for interatomic distances 5 a.u. (top) and 7.5 a.u.
(bottom).
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Table 4.1: Spectroscopic constants for the LiSr molecule: bond length Re, potential well
depth De, harmonic constant ωe, and the ground state averaged dipole moment 〈d〉.
The values in the row labeled DMC are calculated from the DMC2 data displayed in
Figure 4.3 and Figure 4.6 Numbers in parentheses give the statistical uncertainty in the
last significant figure.

Re (a.u.) De (cm−1) ωe(cm
−1) 〈d〉 (D)

DMC 6.80(5) 2.7(3)× 103 167(7) - 0.14(2)
Ref [95] 6.57 2.587× 103 185 - 0.340
Ref [94] 6.71 2.401× 103 184 - 0.244

in Tables 4.1 and 4.2, together with the most recently published calculations which used

much less fully converged coupled cluster and CI methods. For LiSr we calculated the

dipole moment also in the first vibrationally excited state, and we found that it is basically

the same as in the ground state within the given error bar. This can be understood from

the fact that our results show the dipole being approximately linear with bond length over

the range ≈ 6.0 - 7.7 a.u., and this interval covers the spatial range of both the ground

and the first vibrational states. Nevertheless, the nonlinearity of the LiSr dipole moment

may be exploitable for vibrational dependent control of d. In particular, it appears that

the highest bound vibrational states might have considerably smaller dipole moments,

making it possible to largely switch off (and on) the dipole moment through tailored

excitations.

The overall agreement between the calculational approaches, considering how small

the quantities are, is very reasonable. The differences reflect the systematic biases of the

approaches used, and clearly illustrate the challenge of describing weakly-bonded systems

with high accuracy. Since these calculations reflect the state of the art of these compu-

tational methodologies, this shows what is currently feasible. It is clearly desireable to

increase the accuracy further, in order to decrease the uncertainties. This can be accom-

plished with further development of the methods; in particular, for QMC approaches one

would need much higher sensitivity in quantities which do not commute with the Hamil-

tonian so that the optimization of much larger multi-reference wave functions would be

feasible. This is a promising direction for future explorations.
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Table 4.2: Spectroscopic constants for the KRb molecule, defined as in 4.1. The values
in the row labeled DMC correspond to the data displayed in Figure 4.4 and Figure 4.7.

Re (a.u.) De (cm−1) ωe(cm
−1) 〈d〉(D)

DMC 7.58(5) 3.8(3)× 103 77(2) 0.58(2)
Ref [95] 7.63 4.199× 103 76 0.615

4.5 Conclusion

We have carried out careful calculations of the dipole moments and potential energy

curves for the KRb and LiSr molecules using Hartree-Fock, Configuration Interaction, and

fixed-node diffusion quantum Monte Carlo methods. The calculations show significant

effects of the electronic correlations on the magnitude of the dipole moments over the

whole range of the investigated interatomic distances.

Although single determinant QMC already captures most of the correlation energy,

the low-lying excitations need to be explicitly included into the trial function for the LiSr

dimer, particularly for accurate computation of the dipole moment. The need is clear from

the fact that the weights of some configurations beyond the reference HF configuration are

significant. Comparisons of CI(SD) with CI(SDTQ) clearly illustrates the multi-reference

nature of the ground state. The accuracy of our results is supported by the consistency

between our most extensively correlated CI approach and our methodologically quite

distinct QMC results.

In addition, the high percentage of the correlation energy recovered by QMC (≈ 90%)

captures most of the dynamical correlation, and therefore provides much more extensive

insight into how correlations affect sensitive molecular properties.
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Chapter 5

Dissociation Energy Study of

Thorium Compounds

5.1 Motivation

Thorium element is a radioactive element in the last row of the periodic table with atomic

number 90. Like uranium, thorium is also an important nuclei material which can be

used as a nuclear fuel in reactors. Compared to uranium, thorium has its own advantages

to be favorable because of its greater safety benefits. Due to the great interest, it is

worthwhile to study the electronic structure properties using first-principles methods.

However, the presence of the strongly localized f electrons adds tremendous difficulty

to the calculations. Up to now, fairly number of the chemical compounds consisting

of elements from the last row have been studied. For example, calculations on UFn

and Cln were done using DFT with hybrid functionals.[96] [97]. The bond dissociation

energies they obtained agree very well to experiment data. To our best of knowledge,

few calculations on thorium have been done using QMC. In this Chapter, we present the

benchmark QMC calculations on several types of thorium compounds, and we compare

the QMC result with both other theoretical calculations and experiment results.

5.2 Calculation Details

The molecular compounds we want to investigate are ThCln and ThBrn, where n=1,2,3,4.

Th atoms has 90 electrons totally, so it is necessary to apply pseudopotential to elimi-
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nate core electrons. For Th, we use large core Stuttgart pseudopotential removing 78

core electrons which include all d and f electrons and keep 12 valence electrons in

the calculation. Gaussian basis sets are used in the calculation. Basis sets contrac-

tion 8s8p6d5f2g/[5s5p4d5f2g] is used for Th. For Cl and Br, we use energy-consistent

pseudopotentials. Both have 7 electrons in the valance space. Contracted basis sets

11s11p2d1f/[3s3p2d1f] are used for both Cl and Br. We apply DFT method to optimize

the geometry of each molecule using NWCHEM and GAMESS package. The exchange

correlation functional we use is B3LYP, which proves to be successful for molecule cal-

culations. It is a hybrid functional which mixes the exact Hartree Fock exchange and

LDA and GGA functionals(see section 1.4.2). We then take the optimized geometry and

run a sequence of QMC calculations(VMC, fixed-node DMC, see Chapter 2) and apply

Slater-Jastrow wavefunction(see Chapter 3) to calculate the total energies, then evaluate

the dissociation energies.

5.3 Results

We did the calculation for ThCln and ThBrn. The geometries of all the molecules is in

Figure 5.1.

In the case of molecules with Cl element, we compare the QMC energies using different

initial orbitals: Hartree Fock(HF) and DFT. The optimized bond lengths, HF energies,

plus the DMC energies with error bars using both HF orbitals and DFT orbitals are

listed in Table 5.1. In Table 5.2, we list the averaged binding energies in kcal/mol of

ThCln using the data in Table 5.1. The averaged binding energy is defined as ∆E =

(EThCln − ETh − n ∗ ECl)/n

Table 5.1: List of bond length[Angs], symmetry group, and total energies[a.u.] of each
molecule

ThCl4 ThCl3 ThCl2 ThCl Th Cl
d 2.58 2.58 2.53 2.575 n/a n/a

Symmetry Td c3h c2v c∞v n/a n/a
HF -94.845 -79.750 -65.034 -50.126 -35.233 -14.740

DMC(HF) -96.264(4) -81.100(4) -65.933(2) -50.765(2) -35.610(2) -14.967(1)
DMC(DFT) -96.271(4) -81.106(4) -65.937(2) -50.768(2) -35.609(2) -14.967(1)
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ThCl4 ThCl3

ThCl2 ThCl

Figure 5.1: Geometries of each molecule

Table 5.2: List of averaged binding energies(kcal/mol) of ThCln using DMC method

ThCl4 ThCl3 ThCl2 ThCl
DMC(HF) 123.05 122.9 122.3 117.9

DMC(DFT) 124.32 124.6 123.5 120.229
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The electron configuration of Th atoms is [Rh] 6d27s2. The 4 valance electrons 6d27s2

form covalent bonds with at most 4 halogens, which are either Cl or Br. With different

numbers of halogens and different orbital hybridization, the binding energies display a

systematic change. In the Table 5.1, we see the QMC total energies calculated using DFT

orbitals are all lower than those starting with HF orbitals. Although the energy difference

are small, in QMC calculations DFT(B3LYP) orbitals give a better variational upper

bound of the total energies and higher binding energies than HF orbitals. Comparing the

averaged binding energies in Table 5.2, from ThCl to ThCl4, we see a roughly increasing

trend in averaged binding energies as in number of halogens increase, with ThCl being

the lowest. This phenomenon is visible in QMC calculations using both HF and DFT

orbitals.

Among those 4 molecules, ThCl is the simplest one. It is an open-shell structure with

only sigma bond between the 7s electron of Th and 3p electron of Cl. With more halogens,

the higher symmetry of geometry and the more complexity of the orbital hybridization

(p and d orbitals in Th) systematically increase the value of the averaged binding en-

ergies. In order to compare our data with experimental data, we transform the data of

averaged binding energies in Table 5.2 to bond dissociation energies(BDE). We define

bond dissociation energy as

BDEn = EThXn − EThXn−1 − EX (5.1)

We plot the BDEs using our QMC result(using DFT orbitals) and the DFT reference

together with the experimental data[98] in Figure 5.2. We clearly see both QMC and

DFT give similar prediction, although different basis sets and pseudopotentials are used

(DFT references shown here used a much poorer basis set than QMC). The differences

between the QMC results and DFT references are quite reasonable. They are less than

5 kcal/mol which is within the resolution of the method. Since the correlation effects

are treated quite differently in QMC and DFT, we conclude the correlation effect does

not change the dissociation behavior. We also compare the data with experiments. Both

DFT and QMC calculations agree well with the experimental data.

Cl and Br are both in the 7th column in the periodic table except that Br has

one more electron shell than Cl. Therefore theoretically we expect they may have many

similar chemical properties. With the similar core-valence partition, the prediction should

be roughly the same. We want to test whether the additional electron shell in Br changes
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Figure 5.2: Bond dissociation energies for ThCln molecules. QMC data uses DFT or-
bitals

the bonding behavior with Th, making bonding properties apart from Cl. We perform

the calculations following the same procedure as what we did with Cl. The total energies

of each molecule and averaged binding energies are listed in Table 5.3 and Table 5.4.

We see the differences in total energies between HF trial wavefunction and DFT trial

wavefunction. The differences appears larger for open shell molecules, as for ThBr3 and

ThBr, which indicates the larger bias from HF. It is verified in this calculation that the

trend of the averaged bonding energies is similar to Cl cases in Table 5.2. ThBr has the

lowest value. The values of all other molecules are above ThBr. It is also noticed that in

terms of averaged binding energies the difference between ThBr and other 3 molecules

(ThBr2, ThBr3, ThBr4) is more or less 3 kcal/mol. And we have the same difference in

the case with Cl. This is a strong evidence that Cl and Br behave similarly.

We again plot the BDEs in Figure 5.3 to compare our result with reference DFT

calculation and experimental data[99]. There is a difference between QMC result and DFT

result for all molecules except for ThBr. It is reasonable to claim the electron correlation

accounts for this difference in a relatively small fraction. However, apart from ThCln

case, we have a big discrepancy with experimental data. The calculated values and the
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Table 5.3: List of bond length[Angs] of each ThBrn, symmetry, and total energies[a.u.]

ThBr4 ThBr3 ThBr2 ThBr Br
d 2.68 2.71 2.74 2.74

Symmetry Td c3h c2v c∞v
DMC(HF) -89.599(4) -76.090(3) -62.599(3) -49.085(2) -13.320(1)

DMC(DFT) -89.601(4) 76.104(3) -62.602(3) -49.096(3) -13.320(1)

Table 5.4: List of averaged binding energies(kcal/mol) of ThBrn, using DMC method

ThBr4 ThBr3 ThBr2 ThBr
DMC(HF) 111.23 109.20 109.93 97.65

DMC(DFT) 107.27 107.6 107.05 104.3

experimental values differ both qualitatively and quantitatively. The biggest discrepancy

appears in the dissociation channel ThBr− > Th + Br. In Ref [99], it is claimed that

ThBr4 has a distorted tetrahedron structure therefore its behavior is different. However,

this doesn’t show up in our calculation. Other DFT calculation does not show that either.

The bias of the calculation can possibly come from the basis, ECP and method. QMC is

a computational method which has the least dependence on the choice of the basis sets.

The ECP is also tested in many other chemical environments. Since the same Th ECP

has been used in ThCln cases and no big discrepancies occur, we test the ECP of Br by

calculating the binding energy of HBr. The experimental shows the binding energy of

HBr is about 3.8eV while both DFT and DMC results using this ECP are 3.9 - 4.0eV. So

the ECP can not account for such larger errors in ThBrn case. Neither DFT nor QMC

could generate such a big bias(as large as 20kcal/mol).

5.4 Conclusion

We used different ab initio methods(HF, DFT, QMC) and calculated the bond length,

binding energies of ThCln and ThBrn molecules. We compared our result to the experi-
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Figure 5.3: Bond dissociation energies for ThBrn molecules. QMC data uses DFT or-
bitals

mental data. In ThCln cases, the QMC results agree with DFT results and experimental

data. However, in ThBrn cases big differences are shown between the calculated results

and experimental data, although there is an agreement between DFT results and QMC

results.
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Chapter 6

Spin-Orbit Interaction in Quantum

Monte Carlo

Spin-orbit interaction is an interaction of particle’s spin with its motion itself. In many

systems, the spin-orbit interaction effect plays an important role and a careful treat-

ment in the calculation is needed in order to correctly predict any properties of interest.

Traditionally, in all QMC calculations(mentioned in the previous chapters) the spin of

a particular electron is fixed by spin assignment. This treatment is not valid when we

want to deal with the spin-orbit interaction since the operator of spin-orbit interaction is

spin-dependent. Therefore, it becomes necessary to develop a novel approach which can

handle spin business explicitly in QMC. In this chapter, we will introduce a new represen-

tation of electron spin, and then describe the QMC method with the treatment of spin,

finally present an application of this method which is the calculation of two dimensional

electron gas with Rashba interaction, discuss our result and make comparisons to other

calculations in the literature.

6.1 Spin Basis and Wavefunction

In quantum mechanics, the spin operator is well defined using Pauli matrices,

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(6.1)
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The Pauli representation diagonalizes σz matrix with the eigenvalues ±1 and each eigen-

value corresponds to one eigenvector, which is our spin basis:

χ(+1)
z =

(
1

0

)
χ(−1)
z =

(
0

1

)
(6.2)

It is impossible to sample the spin in QMC if we use this basis because these are

discrete functions and we are not able to make a smooth path of the random walk in

the state space of the configuration. The way that we use to overcome this problem is to

change the representation and introduce two continuous functions as our new spin basis

set

〈ω|χ↑〉 =
1√
2π
eiω

〈ω|χ↓〉 =
1√
2π
e−iω (6.3)

Where ω ∈ [0, 2π). Here the ↑ and ↓ mean the z-component of the spin sz = 1/2 and

sz = −1/2. Obviously, these two functions satisfy the orthogonality condition

〈χα|χβ〉 = δαβ (6.4)

An arbitrary quantum state which is a mixture of spin-up state and spin-down state can

be written as

χ(ω) = aeiω + be−iω (6.5)

The spin operator, for example, is given as

sz = 1/2(|χ↑〉〈χ↑| − |χ↓〉〈χ↓|) (6.6)

When this acts on the state χ(ω) it gives

〈ω|sz|χ〉 =
1

2
eiω
∫
dω
′
(eiω

′

)∗χ(ω
′
)− 1

2
e−iω

∫
dω
′
(e−iω

′

)∗χ(ω
′
)

=
1

2
(aeiω − be−iω) (6.7)

So it works as a projection operator. Note here the evaluation involves the integral of spin
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from 0 to 2π, but the integral is actually trivial because what it does is exactly based

on the orthogonality condition in Eq. 6.4. In traditional QMC calculations we build

up the Slater determinant using one-electron orbitals, which we either calculate from

other software packages or build it by hand. For the Hamiltonian which does not contain

spin, we write the Slater determinant as product of two, one is for spin-up electrons

and the other for spin-down electrons. However, this approach is not eligible when we

take the spin-orbit interaction into account. Here, we are only allowed to use one Slater

determinant and each one-electron orbital is a Dirac spinor. The one-electron orbital has

the form

ψ(r, ω) = aφ↑(r)
1√
2π
eiω + bφ↓(r)

1√
2π
e−iω (6.8)

where φ↑ is the spin-up component of the radial part, φ↓ is the spin-down component of

the radial part. The Slater determinant made up of those one-particle orbitals is

D(R,Ω) = det(ψ(r, ω)) (6.9)

6.2 Spin Dynamics in QMC

The Hamiltonian we want to solve is

H = T + VC + VSO (6.10)

where T is the kinetic operator, VC is the Coulomb operator. VSO is the spin-orbit interac-

tion term, which may have different forms for different systems. In our traditional QMC,

the state space of the Markov chain is the position of all the configurations. We now need

to increase one more degree of freedom and include spin variable ω in the configuration

state space. In the Metropolis algorithm, the only additional step is that we propose

a move for spin variable, and the rest of the algorithm works as usual. Therefore, our

traditional VMC algorithm can be easily modified to include spin dynamics by slightly

changing the Metropolis algorithm:

The algorithm works in 3 three steps:

(1)Generate random sample points(walkers) Xi and ωi, where Xi = {Xi : 1 ≤ i ≤ n},
ωi = {ωi : 1 ≤ i ≤ n; 0 ≤ ωi < 2π}. Here Xi denotes position of the ith configuration

and ωi denotes spin variable.
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(2)For each sample point, make a trial move according to any convenient choice of distri-

bution function T (δx = X
′
i −Xi), T (δω = ω

′
i−ωi). The trial move of the spin variable is

same as what we did for position variable, we choose T as a uniform distribution function

or normal distribution function.

(3)For each move, calculate the acceptance probability.

Up to here, the Metropolis algorithm with spin is well-defined.

Since spin operator is a projection operator, an issue is how to evaluate the expectation

value of spin-dependent operator. Similar to what we did when we evaluated the local

energy of the pseudopotential operator, the local energy of any spin-dependent operator

Ô(r, s) is

EÔ =
ÔΨT

ΨT

(6.11)

And the expectation value is the sum of the local energy over all the configurations. A

key thing to notice here is our trial wavefunction ΨT is complex, so it is natural to have a

complex local energy. But only the real part makes sense because any observable quantity

has to be real. So when we average the energy of each walkers, we only keep the real part.

〈Ô〉 = Re[
1

M

M∑
i=1

ÔΨT (R,Ω)

ΨT (R,Ω)
] (6.12)

where M is the number of configurations.

Incorporating spin into DMC algorithm is more complex since we have to derive to

Green’s function for spin. We consider the basis we use for spin e±iω are the eigenstate

for the Hamiltonian H(ω) = −1
2
∂2

∂ω2 − 1
2

(−1

2

∂2

∂ω2
− 1

2
)e±iω = (

1

2
− 1

2
)e±iω = 0 (6.13)

We see here the first term of H(ω) works similarly as a kinetic operator. If we create

an effective Hamiltonian

Heff (R,Ω) = H +H(Ω) (6.14)

where H is the usual Hamiltonian, Ω = (ω1, ω2, ..., ωi...), H(Ω) =
∑

i(−
1
2
∂2

∂ω2
i
− 1

2
). In Eq.

6.13, we show that the additional term H(ω) contributes zero to the eigenenergy. The

Green’s function for spin is analogous to the one of a diffusion process that we derived
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in Chapter 2.

GS(ω
′
, ω; ∆tω) =

1√
2π∆tω

e−(ω−ω′ )2/(2∆tω) (6.15)

where tω means the time corresponding to the spin variable. The Green’s function for

the effective Hamiltonian Heff is

G(R
′
,R; Ω

′
,Ω; ∆t) = 〈R,Ω|e−∆tH−∆tωH(Ω)|R′ ,Ω′〉

= 〈R,Ω|e−∆t(T+VC+VSO)−∆tωH(Ω)|R′ ,Ω′〉

≈ 〈R|e−∆t(T+VC+VSO)|R′〉〈Ω|e−∆tωH(Ω)|Ω′〉+O(∆tω)2

(6.16)

In DMC, the fixed-phase approximation(See Chapter 2) is applied to treat the complex

wavefunctions.

6.3 Rashba Interaction in Two Dimensional Electron

Gas

In this section, we will be discussing Rashba interaction in two dimensional electron gas.

We first review some fundamental theory of electron gas, then we introduce the Rashba

interaction, finally present and analyze the calculation results.

6.3.1 Basic Theory of Homogeneous Electron Gas(HEG)

Homogeneous electron gas, often called Jellium, is a model of interacting electrons placed

in uniformly distributed positively charged background to ensure the system is charge-

neutral. It is an ideal model, but it is very helpful for us to have a basic understanding of

the scheme of electron interaction, especially, the electron correlation effect. We can use

HEG to model the electron-electron interactions in the real system like solids. Without

having atomic lattice and crystal structure to make the system very complex, we can

solely focus on the quantum nature of electrons. We consider N non-interacting electron

gas confined in a cubic box with sides of length L. The solution to the non-interacting
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Hamiltonian which only contains sum of the kinetic operator is

φkλ(r) =
eik·r√
V
χλ (6.17)

where V = L3 is the volume of the box, χλ is the spin functions in Pauli representation.

The wavenumber k is determined by the periodic boundary conditions

ki =
2πni
L

i = x, y, z, ni = 0,±1,±2... (6.18)

We consider the Hamiltonian of HEG.

H = He +Hb +He−b (6.19)

where

He =
N∑
i=1

p2
i

2
+

N∑
i<j

e−α|ri−rj|

|ri − rj|
(6.20)

are the Hamiltonian for electrons,

Hb =
1

2

∫ ∫
d3rd3r

′ n(r)n(r
′
)e−α|r−r

′ |

|r− r′|
(6.21)

is the energy of the positively charged background whose particle density is n(r) = N/V ,

and

He−b = −
N∑
i=1

∫
d3r

n(r)e−α|r−ri|

|r− ri|
(6.22)

is the interaction energy between the electrons and the positively charged background.

Note the notation r denotes the position regarding the background, while ri denotes

electrons. To make the following mathematics meaningful at every step, we change to

Coulomb potential to Yukawa potential which we can finally reduce to Coulomb potential

by taking the limit as α approaches to 0. Because of the long-range properties of Coulomb

interaction, all the three terms in Eq. 6.19 diverge in the thermodynamic limit when

N → ∞, V → ∞, but we can ensure the density n = N/V remains constant, and the

bulk properties, for example E/N(energy per particle), are meaningful.
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It is easy to work out the energy components of the terms Hb and Heb in Eq. 6.19.

Hb =
1

2

N2

V

4π

α2
(6.23)

He−b = −N
2

V

4π

α2
(6.24)

Thus the total Hamiltonian is reduced to

H = −1

2
N2V −14πα−2 +He (6.25)

This is what of physical interest. It can be rigorously shown that plane waves we used

above is the solution to this Hamiltonian under Hartree-Fock approximation if we use

Eq. 6.17 as our one-electron orbital to construct the Slater determinant ΨT = det{φk(r)}.
We here show the result of our interest directly. If the system is non-spin-polarized,

that is, each k-wavenumber eigenstate is occupied by two electrons. Then the maximum

wavenumber is determined by the density

2 · 4

3
πk3

F

V

(2π)3
= N (6.26)

The factor of 2 accounts for the spin degeneracy. Thus

k3
F =

3π2N

V
(6.27)

Define radius of the electron rs which satisfies

V =
4

3
πr3

sN (6.28)

The expectation value of the kinetic energy is

〈ΨT |
N∑
i=1

p2
i

2
|ΨT 〉 =

3

5

k2
F

2
N =

1

2

N

r2
s

3

5
(
9π

4
)2/3 =

1

2
N

2.21

r2
s

(6.29)
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The Coulomb energy is

〈ΨT |
1

2

N∑
i 6=j

e−α|ri−rj|

|ri − rj|
|ΨT 〉 =

1

2

N2

V

4π

α2
− 1

2

N

V

4π

α2
− 1

2

N

rs
(
9π

4
)

1
3

3

2π
(6.30)

It is clear that the first term here cancels the one in Eq.6.25. The second term vanishes

when L → ∞ and α → 0, but keeping α−1 � L . Those two terms combined together

are the Hartree energy, the classical component of Coulomb interaction. It corresponds

to the interaction of electrons without exchanging the momentum. We also introduced

this term in Chapter 1 when we were discussing the Hartree-Fock approximation. The

last term is simplified to −1
2
N 0.916

rs
, which is the exchange energy corresponding to the

interaction of electrons with exchanging the momentum. Thus the ground state energy

per particle under Hartree-Fock approximation is

E/N =
1

2
[
2.21

r2
s

− 0.916

rs
] (6.31)

which is a finite number. The first term is simply the same as the kinetic energy of free

electrons. It is dominant when rs → 0, that is, the density is high. The second term is

the exchange energy and it is negative. The exchange energy is the only term left due to

Coulomb interaction under Hartree-Fock approximation, because as what we have shown,

the Hartree part, is either canceled by the positive background charge or vanishes in the

thermodynamic limit. The exchange becomes dominant when the density of electrons is

low.

For 2D HEG, the same procedure can be followed and the ground state energy per

particle is

E/N =
1

2

1

r2
s

− 4
√

2

3πrs
=

1

2
(

1

r2
s

− 0.12

rs
) (6.32)

6.3.2 Rashba Hamiltonian

Rashba interaction is a consequence of spin-orbit effect in 2 dimensional electron gas(2DEG).

In the system, electrons are free to move in 2 dimensions(x̂ − ŷ plane) but is forbidden

to move in the third direction(ẑ). While the 3 dimensional electron gas is usually used to

model the electron behavior in solid, 2DEG can be realized in semiconductor devices. For

example, in MOSEFT(metal-oxide-semiconductor field effect transistor), when the tran-
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Figure 6.1: Band edge diagram of a basic HEMT. The picture is retrieved at
http://en.wikipedia.org/wiki/File:
HighElectronMobilityTrasistor Band image.PNG

sistor is in the inversion mode, the electrons are confined between the semiconductor-oxide

surface. 2DEG also can be found in high-electron-mobility-transistors(HEMTs) shown in

Figure 6.1 and Figure 6.2.

If we add an electric field perpendicular to the x̂− ŷ plane, which is in ẑ direction,

E = E0ẑ (6.33)

Due to relativistic corrections, based on the electrodynamics theory, an electron moving

in an electric field experiences another effective magnetic field

Beff =
v × E

c2
(6.34)

where v is the speed of the electron and c is the speed of light. This magnetic field

interacts with the electron spin, leading to the spin-orbit coupling term

HSO =
gµB
2c2

(v × E) · σ (6.35)

By defining ζ = gµBE0

2c2
, then

HSO = ζ(σ × p) · ẑ = ζ

N∑
i

(p
(y)
i σ

(x)
i − p

(x)
i σ

(y)
i ) (6.36)
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Figure 6.2: Heterostructure corresponding to the band edge diagram in Figure 6.1. The
picture is retrieved at http://en.wikipedia.org/wiki/File:
Sketch of a heterostructure - 2DEG in GaAs-GaAlAs.png

This is the additional term in the Hamiltonian, called Rashba term. Together with the

kinetic and Coulomb terms, the full Hamiltonian of 2D HEG with Rashba is

H = Hb +He−b +He (6.37)

where

He = T + V +HSO =
N∑
i

p2

2
+
∑
i<j

1

|ri − rj|
+

N∑
i

ζ(p
(y)
i σ

(x)
i − p

(x)
i σ

(y)
i ) (6.38)

The term Hb and He−b and the Hartree term associated with He are canceled as we

showed in the last subsection. The only part of interest is the rest of He: kinetic part, ex-

change part, correlation part and Rashba part. This is the problem we want to solve. The

Rashba part contains spin operator explicitly where we want to apply the methodology

we discussed above.

Let us first remove the Coulomb part of the Hamiltonian, the rest of all are one-
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particle operators only

H
′

e =
N∑
i

p2

2
+

N∑
i

ζ(p
(y)
i σ

(x)
i − p

(x)
i σ

(y)
i ) (6.39)

Note that the Rashba operator commutes with the kinetic operator, so we guess the

possible solution has the following form of a planewave and a Dirac spinor

φk(r) =
1√
S
eik·r

(
α

β

)
(6.40)

We substitute the solution into the eigenvalue equation H
′
eφ(r) = εφ(r)

k2

2

(
α

β

)
+ ζ(ky

(
β

α

)
+ ikx

(
β

−α

)
) = ε

(
α

β

)
(6.41)

We solve α, β, ε. The one-electron eigenstates are

φkλ =
1√
S
eik·r

1

2

(
±ky+ikx

|k|

1

)
(6.42)

The eigenenergies are

εkλ =
k2

2
± ζ|k| (6.43)

The plus and minus signs correspond to quasi-spin-up state and quasi-spin-down state,

respectively. Figure 6.3 shows the plot of eigenenergy as a function of k.

6.3.3 Calculation Details: Wavefunctions, Periodic Boundary

Conditions, Treatment of Coulomb Interactions in Ex-

tended Systems

We apply the simplest form of the wavefunction: Slater-Jastrow type wavefunction.

ΨT (R,Ω) = det(φkλ(r, ω))J(R) (6.44)

86



Figure 6.3: Plot of the energy band given by Eq. 6.43 and energy of a free electron.
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We build our Slater determinant by taking the one-electron orbitals derived in last sub-

section(removing the normalization factor, since it does not matter in QMC), and write

the orbitals in our new spin representation which we introduced in Section 6.1

φkλ = eik·r(±ky + ikx
|k|

eiω + e−iω) (6.45)

The Jastrow factor J(R) doesn’t contain any spin variables so it is the same thing as

in Chapter 3. Our goal is to study the extended quantities of a system with infinite size,

however, our current simulation only supports the system with finite size. The approach

we use in the simulation is to put electrons in a finite box, called a simulation cell,

subjected to an artificially imposed periodic condition. We consider the interaction of

the electrons both the ones in the simulation cell and the imaginary images created by

the periodic repeat of the simulation cell. This approach generates finite-size errors. The

error appears in all the energy components: kinetic, Coulomb potential and Rashba. In an

infinite system, the momentum of an electron can take any values from 0 up to the Fermi

momentum. But only discrete momentum vectors are allowed to be occupied in the finite

systems, which makes the kinetic energy differ from the values in the thermodynamic

limit. The difference goes smaller and converges to values in the thermodynamic limit

when the size of the systems becomes large enough. To address the error in kinetic energy

and avoid the computational cost of simulating systems with a very large size, we use

twist average method. Recall the many-body Bloch theorem: the wavefunction of a system

which has translational symmetry satisfies

ΨT,K(R) = eiK·
∑

i riUK(R) (6.46)

ΨT,Kp(R) = eiKp· 1
N

∑
i riWK(R) (6.47)

where K is the crystal wave vector, also called the crystal momentum and L is the

lattice vector of the simulation cell. UK is a periodic function that is invariant under the

translation of any single electron by a lattice constant vector: UK(ri + nL) = UK(ri).

WK is a periodic function that is invariant under the simultaneous translation of all

the electrons by any primitive lattice vector Rp. WK(r1 + nL, ..., ri + nL, ..., rN + nL) =

WK(r1, ..., ri, ..., rN). Kp is the primitive wave vector distinct from the crystal wave vector

K. If we impose periodic condition on the wavefunction: ΨT (ri + L) = ΨT (ri), it means
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we choose K = 0 in the Bloch theorem. When K = π
L

, we have anti-periodic boundary

condition. When K takes other values, we have the twisted boundary condition. In the

twisted boundary condition, the plane-wave vector of one-electron orbital is

ki = K +
2πni
L

=
π

L
(m+ 2ni) i = x, y, z; ni = 0,±1,±2; −1 ≤ m ≤ 1 (6.48)

Twisted-averaged method is to repeatedly sample special K-points in the first Brillouin

zone of the simulation-cell reciprocal lattice, which corresponds the case if we occupy the

one-particle k vectors starting with different K-points and finally average the energy over

all K-points. This repeated sampling is equivalent to doing an integration over the first

Brillouin zone. Let EK =< ΨT,K|H|ΨT,K >, then

E =
L3

(2π)3

∫
BZ

d3KEK =
∑

weightEK (6.49)

The weight is determined by the number of points in the K-point grids which are equiv-

alent to each other by the symmetry of the point group to unique K-point.

Since the Rashba operator is a one-electron operator involving momentum operator,

the correct treatment of kinetic energy solves the issue of finite-size error with Rashba

operator together.

The potential energy has its problem as well. The long-range property makes it con-

verge very slowly. Even the system is sufficiently large, the potential energy still fluctuates

too much[100]. The Coulomb interaction also needs special treatment to converge. In the

Hamiltonian, the Coulomb interaction is

V =
1

2

∑
i

∑
j 6=i

1

|ri − rj|
(6.50)

When it is subjected to periodic boundary condition, the actual form is changed to

V =
1

2

N∑
i=1

N∑
j=1

′ 1

|ri − rj − nL|
(6.51)

The prime here means the term j = i is omitted when n = 0, and L is the lattice constant

vector. Therefore considering the Coulomb potential of the ith electron due to the jth

one, we also take account of all the image copies of jth electrons in the infinite identical
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copies of the simulation cell. There are two ways of treating the potential energy: one way

is called Ewald summation[101], the other one is simpler, called model potential[102]. In

Ewald summation, the potential energy can be decomposed into two parts:

V =
1

2

N∑
i=1

N∑
j=1,j 6=i

VE(|ri − rj − nL|) +
1

2

N∑
i=1

ξ (6.52)

The first term includes the interaction of the ith electron at ri and jth electron at rj(when

n = 0), plus the ith electron and all the images of jth electron positions positioned at

rj + nL. The second term is due to the ith electron and its own images in the infinite

copies of the simulation cell. It can be calculated by

ξ = lim
r−>rj

(VE(r− rj − nL)− 1

|r− rj − nL|
) (6.53)

Those two sums VE and ξ are only conditionally convergent and not easy to evaluate. In

order to tackle the problem, we decompose each sum into two parts: short-range part and

the long-range part and evaluate the short-range part in real space and the long-range

part in reciprocal space. In 3 dimensional case, the formula is

VE =
∑
n

erfc(α|r(ij) − nL|)
|r(ij) −mL|

+
∑
G

4π

V G2
exp(− G2

4α2
)exp(−i

∑
i

G · ri)−
π

V α2
(6.54)

The first term is the sum in real space. erfc is the complementary error function. r(ij) =

min|ri − rj−nL|, which means when we consider the potential at ri due to an electron at

rj, we consider all the image of the electron at rj over the periodic lattice and pick up the

one which is closest to ri. In other words, we use the nearest image. α is chosen in such a

way that the sum over m is only needed for the nearest neighbour of the simulation cell,

that is, m = 0,±1. The second term is the sum in reciprocal space over G, the reciprocal

lattice vector. i is the imaginary unit. Finally,

ξ =
∑
n

erfc(α|nL|)
n|L|

− 2α√
π
− π

α2V
+
∑
G

4π

V G2
exp(− G2

4α2
) (6.55)
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In 2 dimensional case , the formula is

VE =
∑
n

erfc(α|r(ij) − nL|)
|r(ij) − nL|

+
2π

SG
erfc(

G

2α
)exp(i

∑
i

G · ri)−
2
√
π

αS
(6.56)

ξ =
∑
n

erfc(α|mL|)
|nL|

+
2π

SG
erfc(

G

2α
)− 2α√

π
− 2
√
π

αS
(6.57)

where S is the area of the simulation surface.

Model potential is a simpler treatment. The potential that the ith electron feels by

the jth electron is written as

Vij =
1

r(ij)
(6.58)

where r(ij) = min|ri − rj − nL|. Then the total potential energy is the sum of the

potential the each electron feels then subtract the classical Hartree energy. The total

potential energy is

V =
∑
i 6=j

Vij −H (6.59)

where in 3 dimensional case H =
∫
V

1
r
d3r, V is the simulation box, while in 2 dimensional

case H =
∫
S

1
r
d2r, S is the simulation surface.

6.3.4 Calculation Results

We calculate the energy of 2 dimensional homogeneous electron gas system(2DHEG).

The Hamiltonian used is Eq.6.37. Since ζ depends on some constant number and the

electric field which can be tuned in experiment, we use ζ as a parameter in the cal-

culation. Coulomb potential is treated as model potential. The wavefunction we use is

Slater-Jastrow wavefunction. We take the simplest form of Jastrow, just cusp condition.

Figure 6.4 shows the DMC energy per electron of the system with 58 electrons and rs = 1.

The results use 4 k-points for twisted-averaging. The energy per electron is a function of

quasi-polarization. The quasi-polarization is defined as

ξ =
N+ −N−

N
(6.60)

N+ is the number of quasi-spin-up electrons, and N− is the number of quasi-spin-down

electrons. The quasi-spin states are defined in Eq. 6.42. Based on what we discuss the
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Figure 6.4: DMC energy per electron. The system is 58 electrons with rs = 1, ζ = 0.1.
Coulomb potential is treated as model potential. Slater-Jastrow wavefunction is used.
Number of configurations: 200. Timestep for space: 0.01. Timestep for spin: 0.0003. Our
calculation data is labeled as DMC. Ref data is from [103].

basic theory of jellium, the DMC energy should include kinetic part, exchange part, and

the correlation part and Rashba part. We also plot the result of another calculation of the

same system in reference [103]. From the Figure 6.4, we see two different methods in treat-

ment of spin converge very well. In Figure 6.5, we calculate the energy per electron for

the same system as in Figure 6.4 except rs = 5. We see the fact that for low-density elec-

tron gas, the lowest energy happens to the state with more negative quasi-polarization.

This can be understood as for a system with given number of electrons, since the Rashba

operator is linear function of momentum, the Rashba energy is proportional to 1/rs. So

when the density is low, the Rashba energy becomes dominant, making the ground state

to favor a more negative polarization. The data of our DMC result in Figure 6.4 and

Figure 6.5 are shown in Table 6.1 and Table 6.2.
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Figure 6.5: DMC energy per electron. The system is 58 electrons with rs = 5, ζ = 0.1.
Coulomb potential is treated as model potential. Slater-Jastrow wavefunction is used.
Number of configurations: 200. Timestep for space: 0.01. Timestep for spin: 0.0003. Our
calculation data is labeled as DMC. Ref data is from [103].

Table 6.1: Data for Figure 6.4 with error bars

Quasi-polarization N+ N− E/N [a.u.] E/N[a.u.] [103]

-0.413 17 41 -0.1768(4) -0.180(2)
-0.344 19 39 -0.1906(4) n/a
-0.276 21 37 -0.2063(4) -0.208(3)
-0.207 23 35 -0.2123(6) -0.214(2)
-0.138 25 33 -0.2155(4) -0.216(2)
-0.069 27 31 -0.2123(4) -0.214(2)

0 29 29 -0.2041(3) -0.207(2)
0.069 31 27 -0.1912(3) -0.194(2)
0.137 33 25 -0.1764(4) -0.177(2)
0.275 37 21 -0.1271(4) -0.129(2)
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Table 6.2: Data for Figure 6.5 with error bars

Quasi-polarization N+ N− E/N [a.u.] E/N[a.u.] [103]

-1 0 58 -0.1556(1) -0.1550(3)
-0.827 5 53 -0.1575(1) n/a
-0.689 9 49 -0.1581(1) -0.1578(3)
-0.551 13 45 -0.1578(1) n/a
-0.413 17 41 -0.1566(2) -0.1564(2)
-0.276 21 37 -0.1548(1) n/a
-0.137 25 33 -0.1520(1) -0.1517(2)
-0.069 27 31 -0.1504(1) n/a

0 29 29 -0.1486(1) -0.1482(2)
0.069 31 27 -0.1465(1) n/a

6.3.5 Discussion

The comparisons of the results in Figure 6.4 and Figure 6.5 are very reasonable, although

the two methods treat spin sampling differently. The new treatment of spin in QMC

introduces another two factors which could affect the quality of the results: Fixed-phase

error and spin-timestep bias. The conventional QMC which handles the Hamiltonian

without spin operator can use real function and that leads to fixed-node error. In this

calculation of Rashba interaction, we artificially introduce a phase in the wavefunction

and that causes fixed-phase error. To assess the fixed-phase error, we perform a calculation

of 2D HEG whose Hamiltonian does not contain Rashba operator. The system contains 58

electrons and it is non-spin-polarized, which means half the electrons have up-spin(sz =

1/2) and half have down-spin(sz = −1/2). We use Slater-Jastrow wavefunction, model

potential and no twisted averaging. Jastrow factors are as simple as cusp. We show the

DMC results(energy per electron) with and without spin sampling, and compare other

reference results[104] in Table 6.3. The DMC without spin and reference[104] both use

fixed-node approximation, and the results match together. But since DMC with spin

uses fixed-phase approximation, the energies per electron appear all higher than fixed-

node energy for all rs values. This fact indicates the presence of fixed-phase error, which

appears to be larger than than the fixed-node error. In 2DEG, model potential is usually

preferred because it can give smaller finite-size errors than Ewald sum, even if the Ewald
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Table 6.3: Comparison of different DMC result: DMC with spin sampling, without spin
sampling and reference[104]. Our DMC data is calculated using Slater-Jastrow wavefunc-
tion and model potential without twist averaging. The number listed in the table is the
energy per electron. The number of configurations is 200. The timestep for space is 0.002,
0.01, 0.1 in the order of increasing rs

rs DMC with spin DMC without spin Reference

1 -0.1989(2) -0.2012(3) -0.2013(1)
2 -0.2542(1) -0.2557(2) -0.255802(4)
5 -0.14853(5) -0.14907(5) -0.149134(9)

Table 6.4: Comparison of different DMC result: DMC with spin sampling, without spin
sampling. We use Slater-Jastrow wavefunction. The potential is treated as Ewald sum,
and no twist averaging is used. The number listed in the table is the energy per electron.
The number of configurations is 200. The timestep for space is 0.002, 0.01, 0.1 in the
order of increasing rs

rs DMC with spin DMC without spin

1 -0.1917(2) -0.1941(3)
2 -0.2447(2) -0.2445(2)
5 -0.1367(2) -0.1372(2)

sum is more complex to evaluate[102]. For completeness, though, we also list the data

calculated using Ewald sum instead of model potential in Table 6.4.

The timestep error can addressed by choosing a reasonably small timestep for both

space and spin. By choosing a small timestep, the DMC results has acceptance value

larger than 0.99.

6.3.6 Conclusion

We have introduced a new math representation for spin and incorporated in QMC meth-

ods. Then we have calculated the Rashba interaction in the two dimensional electron gas

and compared the results with other calculations. The comparisons show a very good

agreement overall. The difference of fixed-node and fixed-phased results are compared

to assess the quality of the methods. The whole study demonstrates the feasibility of

evaluating spin-orbit coupling effect using QMC methods.

95



REFERENCES

[1] D. M. Ceperley and B.J. Alder. Phys. Rev. Lett., 45:566, 1980.

[2] D. R. Hartree. Proc. Cambridge Philos. Soc, 24:89, 1928.

[3] V. Fock. Z. Phys., 61:126, 1930.

[4] J. C. Slater. Phys. Rev., 35:210, 1930.

[5] P. Hohenberg and W. Kohn. Phys. Rev., 136:B864, 1964.

[6] W. Kohn and L. J. Sham. Phys. Rev., 140:A1133, 1965.

[7] R. O. Jones and O. Gunnarsson. Rev. Mod. Phys, 61:689, 1989.

[8] D. M. Ceperley. Phys. Rev. B, 18:3126, 1978.

[9] J. P. Perdew and Y. Wang. Phys. Rev. B, 45:13244, 1992.

[10] J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 77:3865, 1996.

[11] A. B. Becke. Phys. Rev. A., 38:3098, 1988.

[12] C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 37:785, 1988.

[13] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
J. Chem. Phys., 21:1087, 1953.

[14] J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H. Kalos. J. Chem. Phys.,
77:349, 1982.

[15] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Rev. Mod. Phys.,
73:33, 2001.

[16] C.-J. Huang, C. J. Umrigar, and M. P. Nightingale. J. Chem. Phys., 107:3007,
1997.

[17] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least squares
problems, 2nd edition. 2004.

[18] C.J.Umrigar and Claudia Filippi. Phys. Rev. Lett., 94:150102.

[19] Julien Toulouse and C.J.Umrigar. J. Chem. Phys., 126:084102, 2007.

[20] D.M.Ceperley. J. Stat. Phys, 43:815.

96



[21] B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds. Monte Carlo Methods in
Ab Initio Quantum Chemistry. World Scientific, 1994.

[22] D. R. Hamann, M. Schluter, and C. Chiang. Phys. Rev. Lett., 43:1494, 1979.

[23] P. A. Christiansen, Y. S. Lee, and K. S. Pitzer. J. Chem. Phys, 71:4445, 1979.

[24] M. Krauss and W. J. Stevens. Ann. Rev. Phys. Chem, 35:357, 1984.

[25] D. Vanderbilt. Phys. Rev. B, 41:7892, 1990.

[26] L.Mitas, E.L.Shirley, and D.M.Ceperley. J. Chem. Phys, 95:3467.

[27] Lincoln D Carr, David DeMille, Roman V Krems, and Jun Ye. Cold and ul-
tracold molecules: science, technology and applications. New Journal of Physics,
11(5):055049, 2009.

[28] E. R. Hudson. Magnetic trapping of calcium monohydride molecules at millikelvin
temperatures. Phys. Rev. A, 79:032716, 2009.

[29] J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle. Nature,
395:148, 1998.

[30] J. M. Doyle, B. Friedrich, J. Kim, and D. Patterson. Phys. Rev. A, 52:R2515, 1995.

[31] J. M. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws. Eur. J. Phys. D.,
31:149, 2004.

[32] S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe. Phys.
Rev. A., 67:043406, 2003.

[33] H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij,
and G. Meijer. Nature, 406:491, 2000.

[34] E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille. Phys. Rev. Lett.,
103:223001, 2009.

[35] E. S. Shuman, J. F. Barry, and D. DeMille. Nature, 467:820, 2010.

[36] M. D. Di Rosa. Eur. Phys. J. D, 31:395, 2004.

[37] B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye. Phys. Rev. Lett., 101:243002, 2008.

[38] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille. Phys. Rev. Lett., 94:203001,
2005.

[39] J. M. Hutson and P. Soldan. Int. Rev. Phys. Chem, 25:497, 2006.

97



[40] O. Dulieu, M. Raoult, and E. Tiemann. J. Phys. B: At. Mol. Opt. Phys, 39:1, 2006.

[41] O. Dulieu and C. Gabbanini. Rep. Prog. Phys., 72:086401, 2009.
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