
1. Sorting
3.1 Soring Basic Concept

a. In place sorting
An in-place sorting algorithm uses constant extra space for producing the
output (modifies the given array only). It sorts the list only by modifying
the order of the elements within the list.

b. Internal and external sorting
When all data that needs to be sorted cannot be placed in-memory at a
time, the sorting is called external sorting. External Sorting is used for
massive amount of data. Merge Sort and its variations are typically used
for external sorting. Some extrenal storage like hard-disk, CD, etc is used
for external storage.
When all data is placed in-memory, then sorting is called internal sorting.

c. Stable sorting
A sorting algorithm is said to be stable if two objects with equal keys
appear in the same order in sorted output as they appear in the input
array to be sorted.

3.2 Selection Sort

http://en.wikipedia.org/wiki/External_sorting

a. Algorithm
The algorithm keeps selecting the min/max in a given
array.

It maintains two subarrays in a given array. One subarray
is already sorted, the remaining subarray is unsorted.

In every iteration of selection sort, the minimum element
(considering ascending order) from the unsorted subarray
is SELECTED and moved to the sorted subarray.

All the elements in the unsorted array are greater(if sorted
in ascending order) than the sorted array. This is because
the sorted array is first k min elements in the given array.

b. C++ implementation
void selectionSort(int arr[], int n)
{
 int i, j, min_idx;

// One by one move boundary of unsorted subarray
for (i = 0; i < n-1; i++)

 {
 // Find the minimum element in unsorted array
 min_idx = i;
 for (j = i+1; j < n; j++)
 { if (arr[j] < arr[min_idx])
 min_idx = j;
 }
 // Swap the found minimum element with the first element
 swap(&arr[min_idx], &arr[i]);
 }
}

c. Complexity
Time complexity:
Average: O(n^2) comparisons, O(n) swaps
Best: O(n^2) comparisons, O(n) swaps
Worst: O(n^2) comparisons, O(n) swaps
Space complexity:
O(1)
The good thing about selection sort is it never makes more
than O(n) swaps/write and can be useful when memory
write is a costly operation.

3.3 Insertion Sort
a. Algorithm

// Sort an arr[] of size n
insertionSort(arr, n)
Loop from i = 1 to n-1.

Pick element arr[i] and insert it into sorted sequence arr[0…i-1]

b. C++ implementation

void insertionSort(int arr[], int n)
{

 int i, key, j;
 for (i = 1; i < n; i++)
 {
 Key = arr[i];
 j = i-1;

 /* Move elements of arr[0..i-1], that are
 greater than key, to one position ahead
 of their current position */
 while (j >= 0 && arr[j] > key)
 {
 arr[j+1] = arr[j];
 j = j-1;
 }
 arr[j+1] = key;
 }

}
c. Complexity

Time complexity:
Worst O(n^2) comparisons and swaps: Elements are
reversely sorted.
Best O(n) comparisons and 0 swaps: Elements are
already sorted.
Space complexity:
O(1)

3.4 Bubble sort
a. Algorithm

Bubble Sort is the simplest sorting algorithm that works by
repeatedly swapping the adjacent elements if they are in
wrong order.

b. c++ implementation
void bubbleSort(int arr[], int n)
{
 int i, j;
 bool swapped;
 for (i = 0; i < n-1; i++)
 {
 swapped = false;
 for (j = 0; j < n-i-1; j++)
 {
 if (arr[j] > arr[j+1])
 {
 swap(&arr[j], &arr[j+1]);
 swapped = true;
 }
 }

 // IF no two elements were swapped by inner loop, then break
 if (swapped == false)
 break;
 }
}

3.5 QuickSort
a. Algorithm

1) Randomly choose a pivot element
2) partition

Given an array and pivot element, put x at its correct
position in sorted array such that all elements
smaller than x before x, and put all elements greater
than x after x.
This is done by keep track of an index i which rightmost
elements that are smaller than the pivot. For each jth
element, if arr[j] < pivot
Then swap a[j] with a[i+1], i++

3) keep doing 1) and 2) in the partitioned array
b. implement in c++

int partition (int arr[], int low, int high)
{
 int pivot = arr[high]; // pivot
 int i = (low - 1); // Index of smaller element

 for (int j = low; j <= high- 1; j++)
 {
 // If current element is smaller than or
 // equal to pivot
 if (arr[j] <= pivot)
 {
 i++; // increment index of smaller element
 swap(&arr[i], &arr[j]);
 }
 }
 swap(&arr[i + 1], &arr[high]);
 return (i + 1);
}

 void quickSort(int arr[], int low, int high)
{

 if (low < high)
 {

 int pi = partition(arr, low, high);
 quickSort(arr, low, pi - 1);

 quickSort(arr, pi + 1, high);
 }

 }

c. Time complexity
Average case: nlogn
Worst case(with a sorted array and bad pivot): n^2, the algorithm goes to
insertion sort

d. Space complexity: log n
Since it is a recursion call and it needs a stack frame to store function
address. The length of the stack frame is log n

e. Quick sort is in-place but not stable.
f. Comparison with heap sort

1) worst time: heap sort is better as it guarantees n logn
2) average time: quicksort is better as the prefactor of n logn is smaller

g. Comparison with merge sort
1) Merge sort is a stable sort, quick sort is not.
2) Space. Merge sort requires O(n) space.

3.6 Merge Sort
a. Algorithm

MergeSort(arr[], l, r)
If r > l

1) Find the middle point to divide the array into two
halves:

 middle m = (l+r)/2
2) Call mergeSort for first half:

 Call mergeSort(arr, l, m)
3) Call mergeSort for second half:

 Call mergeSort(arr, m+1, r)
4) Merge the two halves sorted in step 2 and 3:

 Call merge(arr, l, m, r)

b. Implementation in c++
// Merges two subarrays of arr[]. First subarray is arr[l..m]
Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
 int i, j, k;
 int n1 = m - l + 1;
 int n2 = r - m;

 /* create temp arrays */
 int L[n1], R[n2];

 /* Copy data to temp arrays L[] and R[] */
 for (i = 0; i < n1; i++)
 L[i] = arr[l + i];
 for (j = 0; j < n2; j++)
 R[j] = arr[m + 1+ j];

 /* Merge the temp arrays back into arr[l..r]*/
 i = 0; // Initial index of first subarray
 j = 0; // Initial index of second subarray
 k = l; // Initial index of merged subarray
 while (i < n1 && j < n2)
 {
 if (L[i] <= R[j])
 {
 arr[k] = L[i];
 i++;
 }
 else
 {
 arr[k] = R[j];
 j++;
 }
 k++;
 }

 /* Copy the remaining elements of L[], if there
 are any */
 while (i < n1)
 {
 arr[k] = L[i];
 i++;
 k++;
 }

 /* Copy the remaining elements of R[], if there
 are any */
 while (j < n2)
 {
 arr[k] = R[j];
 j++;
 k++;
 }
}

/* l is for left index and r is right index of the
 sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
 if (l < r)
 {
 // Same as (l+r)/2, but avoids overflow for

 // large l and h
 int m = l+(r-l)/2;

 // Sort first and second halves
 mergeSort(arr, l, m);
 mergeSort(arr, m+1, r);
 merge(arr, l, m, r);
 }
}

c. Complexity:
Time complexity:
Average: nlog(n)
Best: nlog(n)
Worst: nlog(n)
Space complexity:
Depending on the give data structure.
If it is an array then it needs n additional spaces, however
if it is linkedlist, then it does not need additional space

d. Not in-place but stable
e. Application

1) Sort linkedlist.
Because merge two linkedlists can be done by inserting
element from one list to the other, and inserting
element in the linkedlist needs O(1) in space, and O(1)
in time. Therefore merge sort is useful for sorting linked
list.

2) External sorting

3.7 External Merge Sorting for large amount of
data example

Since merge sort is a divide and conquer algorithm, it can
be used to sort large amount of data. The algorithm first
sorts M items at a time and puts the sorted lists back into
external memory. It then recursively does a M/B merge on
those sorted lists. To do this merge, B elements from each
sorted list are loaded into internal memory, and the
minimum is repeatedly outputted.

Example, sort 900 megabytes of data using only 100
megabytes of RAM:
1) Read 100 MB of the data in main memory and sort by some

conventional method, like quicksort.
2) Write the sorted data to disk.
3) Repeat steps 1 and 2 until all of the data is in sorted

100 MB chunks (there are 900MB / 100MB = 9 chunks),
which now need to be merged into one single output
file.

4) Read the first 10 MB (= 100MB / (9 chunks + 1)) of each
sorted chunk into input buffers in main memory and
allocate the remaining 10 MB for an output buffer. (In
practice, it might provide better performance to make
the output buffer larger and the input buffers slightly
smaller.)

5) Perform a 9-way merge and store the result in the
output buffer. Whenever the output buffer fills, write it
to the final sorted file and empty it. Whenever any of
the 9 input buffers empties, fill it with the next 10 MB of
its associated 100 MB sorted chunk until no more data

https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/K-way_merging
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Recursion

from the chunk is available. This is the key step that
makes external merge sort work externally -- because
the merge algorithm only makes one pass sequentially
through each of the chunks, each chunk does not have
to be loaded completely; rather, sequential parts of the
chunk can be loaded as needed.

