
Heap

Heap belongs to a generic tree data structure with a special 
property that: 
1) It is a complete binary tree, which means all levels are 
completely filled except possibly the last level and the last level 
has all keys as left as possible
2) for every node, it has to be larger than its children for max 
heap and has to be smaller than its children for min heap.

Representation: We can use the usual representation of tree 
definition which is for each node we define its left and right child 
reference. And there is also an alternative way of doing it. Since
heap is complete tree, so we can store its element to an array by
its level traversal. For an element with index i, its left child index 
is 2i+1 and 2i+2. 
    

1. Keep the heap property(assuming it is all max 
heap)

In order to maintain heap structure, we define a heapfy function.
Function: heapfy()
a. Algorithm:
  

                                                 
                     

                                         

1) If left > root, swap(left, root), or if right > root, swap(right, 
root)

2) Recursively call heapfy() on the swap the child node till end so
the heap property is reserved.

root

 left right



b. Code
// n size of array, i is start index.
Void heapfy(int[] arr, int n, int i)
{

int largest = i; 
       int l = 2i+1;   // binary tree index relations
       int r = 2i+2;
       if(l<n && arr[l] > arr[largest])

    largest = i;
       if(r<n && arr[r]> arr[largest])
           largest = r;
      //swap
       If(largest != i)
       {

    swap(arr[i], arr[largest]);
           heapfy(arr, n, largest);
        }
}

c. Time complexity
h is the height of the tree
O(h) = O(log_2 n)

2. Build Heap
            a. Algorithm
 do heapfy() on all the nodes that have children, these nodes 

have index(n/2-1, 0) (based on binary tree property)

            b. Code
void buildHeap(int[] arr, int n)
{

for(int i=n/2  -1; i>=0; i--)
{
    heapfy(arr, n, i);
}

}
           c. Time Complexity

Time = \sum _{h=0} ^ {log_2n}  [\frac{n}{2^{h+1}}]  
O(h)
   
    O(h) : time to call one heapfy()



    [\frac{n}{2^{h+1}}]: number of nodes on the same tree 
level
     \sum _{h=0} ^ {log_2^n} : sum over all the levels.

So time = O(n \sum_{h=0}^(lgn) h/(2^h))
               = O(2n)
               =O(n)

3．Heapsort

a. algorithm
1) Build the heap
2) Start from the last element(index n-1), 
3) swap it with the first element. Then the last element becomes 
sorted
4) Do heapfy on the unsorted elements
5) Move to the next unsorted element, in this case it is the last but 
two(index n-2), repeat 3) and 4) until all elements become sorted.
b. Code

Void heapsort(int arr[], int n)
// build heap
void buildHeap(arr, n);
for(int i = n-1; i>=0; i--)
{ 

swap(arr[0], arr[i]);
heapfy(arr, i, 0);

}

c. Time complexity
1)Build heap O(n)
2)Sort nlog_2 n

d. Comparison

1) Compare to quicksort                              



                                      
2) Compare to mergesort

                                    
                                                    

                                            

MS HS comment
Space O(n) O(1) MS needs additional 

space for merge
Stable 
sort

Yes MS keeps order for same 
element

Better 
Cache 
performa
nce

Yes MS accesses the caches that
are near to each other.

                                                                      

4. Binary heap time complexity analysis
a. Time complexity table

Average Worst
Search O(n) O(n)
Insert O(1) O(h) = 

O(long(n))
Delete O(log(n)) O(long(n))
Peek O(1) O(1)

b. Insert
1) Add the element to the bottom level of the heap

QS  HS             comment
Average  
Speed

Faster 12nlogn vs 
16 nlog n

Worst Speed Faster n^2 vs nlogn



2) Compare the added element with its parent
If they are in correct order, stop

3) If not swap the element with its parent and return to 
the 2) by keeping comparing the parent

c. Insert average time complexity
Assuming a uniform distribution of numbers, which 
means for any element in the heap, it has a one-half 
chance of being greater than its parent. And it has one-
fourth chance of being greater than its grandparent. So 
the expected number of swap during the insertion is
Probability of swapping with 1st parent * number of swap
+ Probability of swapping with 2st parent * number of 
swap + …+ Probability of swapping with mst parent

= ½ * 1 + ¼ * 2 + 1/8* 3 + ½^m * m
= \sum \frac{m}{2^m}
= 2 when m goes to \inf

                               Therefore the averaged time complexity is O(1) 

5. Priority Queue
     a. Definition

PriorityQueue is a data structure that stores the data based
upon their priority. For example, let us image we have a l
ist of integers and we would like the data structure(called 
priority queue)to retrieve the max integer in constant time.
Then we can implement this use max heap. 

     b. Property and usage
1) Data stored in the priority queue does not have to 
sorted, it only needs to maintain heap data structure. ie. 
parent is larger than children.
2) In order to maintain first K minimum data of a given 
data source, we  use max heap. This is a little counter 
intuitive and the reason is we use max heap so that we can
pop out the largest element when the queue  reaches its 
capacity. Each time we add the element into the queue 
and  maintain the heap structure, when we reaches the 
capacity of the queue, we pop out the largest element 
which is the root of the heap, and then maintain the heap 
structure again.

c. Examples
    data: 3 2 4 5 4 and build a max heap
 



(1) 3            root node
(2)   3          add 2, max heap property is auto maintained.
      / 
    2
(3)   3          add 4, max heap property is violated. 
       / \ 
     2   4        
        4          fix max heap property
       /  \
      2   3
(4)    4         add 5, max heap property is violated
        / \
       2  3
      /
     5
     
         4 
        /   \
       5    3
      /
     2            

(5)       5        add 4, max heap property is maintained

        /   \
      4    3
      / \ 
     2  4    
  
      


