
1. Graph Search Algorithm:
For some data structure like linkedlist, each node is only connected one other 
node, and the connection is in single direction. This allows us the traverse the 
linkedlist iteratively by keep visiting the next node of a given node till the end of 
the list.  In graph, each node is connected with multiple nodes, for a given node, 
we need a metric to determine which node to go next. There are two ways to do it
Breadth First Search(BFS) and Deep First Search(DFS).

1.1 BFS
a. Intuition
(1) For any node, we would like to visit all its adjacent nodes before we go deeper.
(2) For any node, there are three states.

State1 Unvisited, it means we never reach it. For example, at the beginning of 
the search, all nodes are unvisited.
State2 Visited, but not each of its adjacent nodes is visited. For example, we 
start from node0, and node0 has adjacent nodes named node1 and node2. 
Once we visit node 0, node0 becomes visited, but its adjacent node1 and 
node2 are unvisited.
State3 Visited, and all of its adjacent nodes are visited.

(3) For all the nodes with  state3, we are done
      For all the nodes with  state2, we need to keep track of it using certain data 
      structure. That means given a node, we need to store all its adjacent nodes 

which are state2. Then we come back to visit those stored first. Using a queue
can meet our needs. 

(4)  All the nodes with state2 are store in a queue.
(5)  For cyclic graph, we can come back to the same node we start with, so also 

need a data structure to keep track of all the visited nodes. For acyclic graph 
and if we start a node that connects to all the other node, we do no need 
additional data structure to store all visited nodes.

b. Algorithm and Implementation
 
class Graph 
{ 
    private int V;   // No. of vertices 
    private LinkedList<Integer> adj[]; //Adjacency Lists 
  
    // Constructor 
    Graph(int v) 
    { 
        V = v; 
        adj = new LinkedList[v]; 



        for (int i=0; i<v; ++i) 
            adj[i] = new LinkedList(); 
    } 
  
    // Function to add an edge into the graph 
    void addEdge(int v,int w) 
    { 
        adj[v].add(w); 
    } 
  
    // prints BFS traversal from a given source s 
    void BFS(int s) 
    { 
        // Mark all the vertices as not visited(By default 
        // set as false) 
        boolean visited[] = new boolean[V]; 
  
        // Create a queue for BFS 
        LinkedList<Integer> queue = new LinkedList<Integer>(); 
  
        // Mark the current node as visited and enqueue it 
        visited[s]=true; 
        queue.add(s); 
  
        while (queue.size() != 0) 
        { 
            // Dequeue a vertex from queue and print it 
            s = queue.poll(); 
            System.out.print(s+" "); 
  
            // Get all adjacent vertices of the dequeued vertex s 
            // If a adjacent has not been visited, then mark it 
            // visited and enqueue it 
            Iterator<Integer> i = adj[s].listIterator(); 
            while (i.hasNext()) 
            { 
                int n = i.next(); 
                if (!visited[n]) 
                { 
                    visited[n] = true; 
                    queue.add(n); 
                } 
            } 
        } 
    } 
}

c. Time complexity O(V + E)



(1) Loop element in the queue
      we keep adding and poping element in and out of the queue. As we check 
whether the element has been visited or not before we enqueue it, each element is 
enqueued only once. Therefore the time complexity for the queue operation is 
O(V)
(2) Loop for adjacent elements of each node pop out of the queue.  The total 
number of iterations are 2 x number of edges. The factor 2 comes from duplicated 
counting.
So, the total time complexity is O(V+E).
 

1.2 DFS
a. Intuition
(1) In DFS, we explore the graph as deep as possible.
(2) This means for each node, as long as there is an adjacent unvisited node, we 
would visited that node, and keep doing it until we reach the node where all the 
adjacent nodes have been visited.
(3) Then we go backwards to the last but two node, keep visiting another unvisited
adjacent node. Repeating in (2).
(4) For any node, there are three states. Same as BFS.
b. Implementation
(1) From the intuition above, for each node we keep exploring the edges as deep as
possible. Once reach the deepest one, we move back to the last but two node, then 
exploring the unvisited adjacent node as deep as possible. A natural structure to 
solve go in and go out pattern is recursion.

class Graph 
{ 
    private int V;   // No. of vertices 
  
    // Array  of lists for Adjacency List Representation 
    private LinkedList<Integer> adj[]; 
  
    // Constructor 
    Graph(int v) 
    { 
        V = v; 
        adj = new LinkedList[v]; 
        for (int i=0; i<v; ++i) 
            adj[i] = new LinkedList(); 
    } 
  



    //Function to add an edge into the graph 
    void addEdge(int v, int w) 
    { 
        adj[v].add(w);  // Add w to v's list. 
    } 
  
    // A function used by DFS 
    void DFSUtil(int v,boolean visited[]) 
    { 
        // Mark the current node as visited and print it 
        visited[v] = true; 
        System.out.print(v+" "); 
  
        // Recur for all the vertices adjacent to this vertex 
        Iterator<Integer> i = adj[v].listIterator(); 
        while (i.hasNext()) 
        { 
            int n = i.next(); 
            if (!visited[n]) 
                DFSUtil(n, visited); 
        } 
    } 
  
    // The function to do DFS traversal. It uses recursive DFSUtil() 
    void DFS(int v) 
    { 
        // Mark all the vertices as not visited(set as 
        // false by default in java) 
        boolean visited[] = new boolean[V]; 
  
        // Call the recursive helper function to print DFS traversal 
        DFSUtil(v, visited); 
    } 

}

(2) The above recursion call using a recursion call stack, we can define a explicit 
stack to do the search.
static class Graph 
    { 
        int V; //Number of Vertices 
          
        LinkedList<Integer>[] adj; // adjacency lists 
          
        //Constructor 
        Graph(int V) 
        { 



            this.V = V; 
            adj = new LinkedList[V]; 
              
            for (int i = 0; i < adj.length; i++) 
                adj[i] = new LinkedList<Integer>(); 
              
        } 
          
        //To add an edge to graph 
        void addEdge(int v, int w) 
        { 
            adj[v].add(w); // Add w to v’s list. 
        } 
          
        // prints all not yet visited vertices reachable from s 
        void DFSUtil(int s, Vector<Boolean> visited) 
        { 
            // Create a stack for DFS 
            Stack<Integer> stack = new Stack<>(); 
               
            // Push the current source node 
            stack.push(s); 
               
            while(stack.empty() == false) 
            { 
                // Pop a vertex from stack and print it 
                s = stack.peek(); 
                stack.pop(); 
                   
                // Stack may contain same vertex twice. So 
                // we need to print the popped item only 
                // if it is not visited. 
                if(visited.get(s) == false) 
                { 
                    System.out.print(s + " "); 
                    visited.set(s, true); 
                } 
                   
                // Get all adjacent vertices of the popped vertex s 
                // If a adjacent has not been visited, then push it 
                // to the stack. 
                Iterator<Integer> itr = adj[s].iterator(); 
                   
                while (itr.hasNext())  
                { 
                    int v = itr.next(); 
                    if(!visited.get(v)) 
                        stack.push(v); 
                } 



                   
            } 
        } 
          
        // prints all vertices in DFS manner 
        void DFS() 
        { 
            Vector<Boolean> visited = new Vector<Boolean>(V); 
            // Mark all the vertices as not visited 
            for (int i = 0; i < V; i++) 
                visited.add(false); 
      
            for (int i = 0; i < V; i++) 
                if (!visited.get(i)) 
                    DFSUtil(i, visited); 
        }     
    } 

c.Time complexity O(V+E)
For the iterative version, analysis is similar to BFS.  The size of the stack is O(V)
for each node,  we loop the adjacent nodes, the total adjacent nodes is O(E), 
Therefore, the time complexity O(V+E).
For the recursive version, the DFS recursion is called V times, and in each DFS, 
we loop the adjacent nodes of the current nodes, the total number of iteration is 
O(E). Therefore, it is O(V+E).

1.3. Topological sorting
For a direct acyclic graph, we can use it to represent the order of a sequence of 
events. Topological sort transfers a graph to a linear array/list while keep the order 
the sequence.  
 a. Why topological?
Topology is a subject in math which studies the properties of an geometry object 
under continuous deformations. For example, the donut and the cup has one hole 
and one can continuously deform a donut to a cup. The topological sort transfer a 
graph to linear list without changing its topology property. Topological sort 
requires a graph has no cycle, so that we can transform it to a list which does not 
contain any cycle either. And the acyclic graph and the list have the same 
topological property. 
b. Implementation
class Graph 
{ 
    private int V;   // No. of vertices 
    private LinkedList<Integer> adj[]; // Adjacency List 



  
    //Constructor 
    Graph(int v) 
    { 
        V = v; 
        adj = new LinkedList[v]; 
        for (int i=0; i<v; ++i) 
            adj[i] = new LinkedList(); 
    } 
  
    // Function to add an edge into the graph 
    void addEdge(int v,int w) { adj[v].add(w); } 
  
    // A recursive function used by topologicalSort 
    void topologicalSortUtil(int v, boolean visited[], 
                             Stack stack) 
    { 
        // Mark the current node as visited. 
        visited[v] = true; 
        Integer i; 
  
        // Recur for all the vertices adjacent to this 
        // vertex 
        Iterator<Integer> it = adj[v].iterator(); 
        while (it.hasNext()) 
        { 
            i = it.next(); 
            if (!visited[i]) 
                topologicalSortUtil(i, visited, stack); 
        } 
  
        // Push current vertex to stack which stores result 
        stack.push(new Integer(v)); 
    } 
  
    // The function to do Topological Sort. It uses 
    // recursive topologicalSortUtil() 
    void topologicalSort() 
    { 
        Stack stack = new Stack(); 
  
        // Mark all the vertices as not visited 
        boolean visited[] = new boolean[V]; 
        for (int i = 0; i < V; i++) 
            visited[i] = false; 
  
        // Call the recursive helper function to store 
        // Topological Sort starting from all vertices 
        // one by one 



        for (int i = 0; i < V; i++) 
            if (visited[i] == false) 
                topologicalSortUtil(i, visited, stack); 
  
        // Print contents of stack 
        while (stack.empty()==false) 
            System.out.print(stack.pop() + " "); 
    } 

2. Binary Tree traversal algorithm
   2.1 Recursively traverse a tree (same as DFS)
       a. pseudocode 
       traverse(Node node)
       {   
           if (node == null) return 

traverse(node.left);
      traverse(node.right);

       }
       For each node,  the traverse function is entered three times

1) before traverse its left node
2) after traverse its left node & before traverse the right node

  3) after traverse its right node
       b. visiting trace is a loop from the root node to the root node 
           for example the tree below, the visiting trace is
           F B A B D C D E D B F G I H I G F   



           

we see each node is touched 3 times.  If we want to convert the tree to a 
linear data structure like array or list such that each node is picked only 
once, depending on how we pick up the node, we can end up 3 
different ways of traversal

            

(1) If we each elements for the first time of its appearance, such an order is called
preorder traversal，which is F B A D C E G I H. This is also a topological sort 
of the tree, as for each node, all of its children come after itself. 

(2) If we each elements for the first time of its appearance, such an order is 
called inorder traversal, which is A B C D E F G H I
(3) If we each elements for the first time of its appearance, such an order is 
called postorder traversal, which is A C E D B H I G F

c. Complexity
(1) Time complexity. O(N)
       This is because one has to visit each node of the tree.
(2) Space complexity
      Since it is a recursion, the space complexity is the depth of recursion. For 

balanced tree it is O(logN), for unbalanced, the worst case is O(N).

d. Build a tree from its traversal result

    following combination can uniquely identify a tree.

Inorder and Preorder.

Inorder and Postorder.

Inorder and Level-order.

And following do not.

Postorder and Preorder.



Preorder and Level-order.

Postorder and Level-order.

2.1 Iteratively traverse a tree.

     Iterative traversal can be used as level order traversal(it is the same as BFS)

3. Binary Search Tree

3.1 Property

(1) left< node < right

(2) its in order traversal is a sorted array.


